Remarks on the breakdown of smooth solutions for the 3-D Euler equations View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1984-03

AUTHORS

J. T. Beale, T. Kato, A. Majda

ABSTRACT

The authors prove that the maximum norm of the vorticity controls the breakdown of smooth solutions of the 3-D Euler equations. In other words, if a solution of the Euler equations is initially smooth and loses its regularity at some later time, then the maximum vorticity necessarily grows without bound as the critical time approaches; equivalently, if the vorticity remains bounded, a smooth solution persists. More... »

PAGES

61-66

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf01212349

DOI

http://dx.doi.org/10.1007/bf01212349

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1038298888


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Numerical and Computational Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Duke University", 
          "id": "https://www.grid.ac/institutes/grid.26009.3d", 
          "name": [
            "Department of Mathematics, Duke University, 27701, Durham, NC, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Beale", 
        "givenName": "J. T.", 
        "id": "sg:person.01253117224.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01253117224.07"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of California, Berkeley", 
          "id": "https://www.grid.ac/institutes/grid.47840.3f", 
          "name": [
            "Department of Mathematics, University of California, 94720, Berkeley, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kato", 
        "givenName": "T.", 
        "id": "sg:person.0672636204.67", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0672636204.67"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of California, Berkeley", 
          "id": "https://www.grid.ac/institutes/grid.47840.3f", 
          "name": [
            "Department of Mathematics, University of California, 94720, Berkeley, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Majda", 
        "givenName": "A.", 
        "id": "sg:person.01101617725.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01101617725.41"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bfb0091456", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002867017", 
          "https://doi.org/10.1007/bfb0091456"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0362-546x(80)90068-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010574184"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01208714", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019950290", 
          "https://doi.org/10.1007/bf01208714"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01208714", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019950290", 
          "https://doi.org/10.1007/bf01208714"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cpa.3160340606", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028909800"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cpa.3160340606", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028909800"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bfb0067080", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048580040", 
          "https://doi.org/10.1007/bfb0067080"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cpa.3160340405", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049545857"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cpa.3160340405", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049545857"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-1236(72)90003-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050772760"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0022112078001846", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053984852"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.44.572", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060785047"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.44.572", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060785047"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1984-03", 
    "datePublishedReg": "1984-03-01", 
    "description": "The authors prove that the maximum norm of the vorticity controls the breakdown of smooth solutions of the 3-D Euler equations. In other words, if a solution of the Euler equations is initially smooth and loses its regularity at some later time, then the maximum vorticity necessarily grows without bound as the critical time approaches; equivalently, if the vorticity remains bounded, a smooth solution persists.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf01212349", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136216", 
        "issn": [
          "0010-3616", 
          "1432-0916"
        ], 
        "name": "Communications in Mathematical Physics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "94"
      }
    ], 
    "name": "Remarks on the breakdown of smooth solutions for the 3-D Euler equations", 
    "pagination": "61-66", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "b6713ef9acf5d7a325fb93c1d371d5063c3481abbde55fa13ed584b121ca73c6"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf01212349"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1038298888"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf01212349", 
      "https://app.dimensions.ai/details/publication/pub.1038298888"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:28", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000370_0000000370/records_46741_00000002.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/BF01212349"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01212349'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01212349'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01212349'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01212349'


 

This table displays all metadata directly associated to this object as RDF triples.

108 TRIPLES      21 PREDICATES      36 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf01212349 schema:about anzsrc-for:01
2 anzsrc-for:0103
3 schema:author N1235dbbd0e654eb8b2b0d2ddc1670f44
4 schema:citation sg:pub.10.1007/bf01208714
5 sg:pub.10.1007/bfb0067080
6 sg:pub.10.1007/bfb0091456
7 https://doi.org/10.1002/cpa.3160340405
8 https://doi.org/10.1002/cpa.3160340606
9 https://doi.org/10.1016/0022-1236(72)90003-1
10 https://doi.org/10.1016/0362-546x(80)90068-1
11 https://doi.org/10.1017/s0022112078001846
12 https://doi.org/10.1103/physrevlett.44.572
13 schema:datePublished 1984-03
14 schema:datePublishedReg 1984-03-01
15 schema:description The authors prove that the maximum norm of the vorticity controls the breakdown of smooth solutions of the 3-D Euler equations. In other words, if a solution of the Euler equations is initially smooth and loses its regularity at some later time, then the maximum vorticity necessarily grows without bound as the critical time approaches; equivalently, if the vorticity remains bounded, a smooth solution persists.
16 schema:genre research_article
17 schema:inLanguage en
18 schema:isAccessibleForFree false
19 schema:isPartOf N78e62c7044d74a78a78bdbc4fafd5fc5
20 Nb5f159ecc8dc44edb12aa3b973df4107
21 sg:journal.1136216
22 schema:name Remarks on the breakdown of smooth solutions for the 3-D Euler equations
23 schema:pagination 61-66
24 schema:productId N40103d44094642f09519fae338f5e920
25 Nbc44ab88d9fb4ff59157ee2580e52f77
26 Ndf46c3ab9c604f5b9f6499bf04d80d5e
27 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038298888
28 https://doi.org/10.1007/bf01212349
29 schema:sdDatePublished 2019-04-11T13:28
30 schema:sdLicense https://scigraph.springernature.com/explorer/license/
31 schema:sdPublisher N17089f4edfaa4e5281dfb8311d7e2de3
32 schema:url http://link.springer.com/10.1007/BF01212349
33 sgo:license sg:explorer/license/
34 sgo:sdDataset articles
35 rdf:type schema:ScholarlyArticle
36 N1235dbbd0e654eb8b2b0d2ddc1670f44 rdf:first sg:person.01253117224.07
37 rdf:rest N6dfcb549ab33406b8868158ec50d4396
38 N17089f4edfaa4e5281dfb8311d7e2de3 schema:name Springer Nature - SN SciGraph project
39 rdf:type schema:Organization
40 N40103d44094642f09519fae338f5e920 schema:name dimensions_id
41 schema:value pub.1038298888
42 rdf:type schema:PropertyValue
43 N6dfcb549ab33406b8868158ec50d4396 rdf:first sg:person.0672636204.67
44 rdf:rest Nef3f924127204dd08ff68ea0fee297fb
45 N78e62c7044d74a78a78bdbc4fafd5fc5 schema:issueNumber 1
46 rdf:type schema:PublicationIssue
47 Nb5f159ecc8dc44edb12aa3b973df4107 schema:volumeNumber 94
48 rdf:type schema:PublicationVolume
49 Nbc44ab88d9fb4ff59157ee2580e52f77 schema:name readcube_id
50 schema:value b6713ef9acf5d7a325fb93c1d371d5063c3481abbde55fa13ed584b121ca73c6
51 rdf:type schema:PropertyValue
52 Ndf46c3ab9c604f5b9f6499bf04d80d5e schema:name doi
53 schema:value 10.1007/bf01212349
54 rdf:type schema:PropertyValue
55 Nef3f924127204dd08ff68ea0fee297fb rdf:first sg:person.01101617725.41
56 rdf:rest rdf:nil
57 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
58 schema:name Mathematical Sciences
59 rdf:type schema:DefinedTerm
60 anzsrc-for:0103 schema:inDefinedTermSet anzsrc-for:
61 schema:name Numerical and Computational Mathematics
62 rdf:type schema:DefinedTerm
63 sg:journal.1136216 schema:issn 0010-3616
64 1432-0916
65 schema:name Communications in Mathematical Physics
66 rdf:type schema:Periodical
67 sg:person.01101617725.41 schema:affiliation https://www.grid.ac/institutes/grid.47840.3f
68 schema:familyName Majda
69 schema:givenName A.
70 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01101617725.41
71 rdf:type schema:Person
72 sg:person.01253117224.07 schema:affiliation https://www.grid.ac/institutes/grid.26009.3d
73 schema:familyName Beale
74 schema:givenName J. T.
75 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01253117224.07
76 rdf:type schema:Person
77 sg:person.0672636204.67 schema:affiliation https://www.grid.ac/institutes/grid.47840.3f
78 schema:familyName Kato
79 schema:givenName T.
80 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0672636204.67
81 rdf:type schema:Person
82 sg:pub.10.1007/bf01208714 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019950290
83 https://doi.org/10.1007/bf01208714
84 rdf:type schema:CreativeWork
85 sg:pub.10.1007/bfb0067080 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048580040
86 https://doi.org/10.1007/bfb0067080
87 rdf:type schema:CreativeWork
88 sg:pub.10.1007/bfb0091456 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002867017
89 https://doi.org/10.1007/bfb0091456
90 rdf:type schema:CreativeWork
91 https://doi.org/10.1002/cpa.3160340405 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049545857
92 rdf:type schema:CreativeWork
93 https://doi.org/10.1002/cpa.3160340606 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028909800
94 rdf:type schema:CreativeWork
95 https://doi.org/10.1016/0022-1236(72)90003-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050772760
96 rdf:type schema:CreativeWork
97 https://doi.org/10.1016/0362-546x(80)90068-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010574184
98 rdf:type schema:CreativeWork
99 https://doi.org/10.1017/s0022112078001846 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053984852
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1103/physrevlett.44.572 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060785047
102 rdf:type schema:CreativeWork
103 https://www.grid.ac/institutes/grid.26009.3d schema:alternateName Duke University
104 schema:name Department of Mathematics, Duke University, 27701, Durham, NC, USA
105 rdf:type schema:Organization
106 https://www.grid.ac/institutes/grid.47840.3f schema:alternateName University of California, Berkeley
107 schema:name Department of Mathematics, University of California, 94720, Berkeley, CA, USA
108 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...