Examples of discrete Schrödinger operators with pure point spectrum View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1983-12

AUTHORS

Jürgen Pöschel

ABSTRACT

We present a general approach for constructing potentials for the discrete Schrödinger equation of arbitrary dimension having only pure point spectrum. We give examples of limit periodic potentials of that kind such that the pure point spectrum is dense in an interval or a Cantor set of measure zero.

PAGES

447-463

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf01211953

DOI

http://dx.doi.org/10.1007/bf01211953

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1007298108


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Swiss Federal Institute of Technology in Zurich", 
          "id": "https://www.grid.ac/institutes/grid.5801.c", 
          "name": [
            "Mathematik, ETH-Zentrum, CH-8092, Z\u00fcrich, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "P\u00f6schel", 
        "givenName": "J\u00fcrgen", 
        "id": "sg:person.013264055706.89", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013264055706.89"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf01209477", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001325321", 
          "https://doi.org/10.1007/bf01209477"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01209477", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001325321", 
          "https://doi.org/10.1007/bf01209477"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01206883", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012813078", 
          "https://doi.org/10.1007/bf01206883"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01206883", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012813078", 
          "https://doi.org/10.1007/bf01206883"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01208483", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021268290", 
          "https://doi.org/10.1007/bf01208483"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01208483", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021268290", 
          "https://doi.org/10.1007/bf01208483"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1749-6632.1980.tb29679.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039634224"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01211954", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040700356", 
          "https://doi.org/10.1007/bf01211954"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01211954", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040700356", 
          "https://doi.org/10.1007/bf01211954"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01399536", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052187208", 
          "https://doi.org/10.1007/bf01399536"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01206947", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052820454", 
          "https://doi.org/10.1007/bf01206947"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01206947", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052820454", 
          "https://doi.org/10.1007/bf01206947"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1983-12", 
    "datePublishedReg": "1983-12-01", 
    "description": "We present a general approach for constructing potentials for the discrete Schr\u00f6dinger equation of arbitrary dimension having only pure point spectrum. We give examples of limit periodic potentials of that kind such that the pure point spectrum is dense in an interval or a Cantor set of measure zero.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf01211953", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136216", 
        "issn": [
          "0010-3616", 
          "1432-0916"
        ], 
        "name": "Communications in Mathematical Physics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "88"
      }
    ], 
    "name": "Examples of discrete Schr\u00f6dinger operators with pure point spectrum", 
    "pagination": "447-463", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "22c3634a15d73f7774d99773bf870cb707231a5727456c883b66bf2d4969ccad"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf01211953"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1007298108"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf01211953", 
      "https://app.dimensions.ai/details/publication/pub.1007298108"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T01:03", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8697_00000494.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/BF01211953"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01211953'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01211953'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01211953'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01211953'


 

This table displays all metadata directly associated to this object as RDF triples.

88 TRIPLES      21 PREDICATES      34 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf01211953 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N77a1c10d7aa2458d8e3d3be737cf4ac4
4 schema:citation sg:pub.10.1007/bf01206883
5 sg:pub.10.1007/bf01206947
6 sg:pub.10.1007/bf01208483
7 sg:pub.10.1007/bf01209477
8 sg:pub.10.1007/bf01211954
9 sg:pub.10.1007/bf01399536
10 https://doi.org/10.1111/j.1749-6632.1980.tb29679.x
11 schema:datePublished 1983-12
12 schema:datePublishedReg 1983-12-01
13 schema:description We present a general approach for constructing potentials for the discrete Schrödinger equation of arbitrary dimension having only pure point spectrum. We give examples of limit periodic potentials of that kind such that the pure point spectrum is dense in an interval or a Cantor set of measure zero.
14 schema:genre research_article
15 schema:inLanguage en
16 schema:isAccessibleForFree false
17 schema:isPartOf N67994d74ab634dc0946637f4e9f68398
18 Nec56a3d0e51e405ca7be22c9ff037e50
19 sg:journal.1136216
20 schema:name Examples of discrete Schrödinger operators with pure point spectrum
21 schema:pagination 447-463
22 schema:productId N599217274dfe494cb40bee5b2d4d9167
23 N5fe646e7add04e67bf73dd2082a42c31
24 N971fee5df06d4cd1a55fba3f4c2836e7
25 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007298108
26 https://doi.org/10.1007/bf01211953
27 schema:sdDatePublished 2019-04-11T01:03
28 schema:sdLicense https://scigraph.springernature.com/explorer/license/
29 schema:sdPublisher Na9bf52b29b9b46b5bf874ec806a7eca2
30 schema:url http://link.springer.com/10.1007/BF01211953
31 sgo:license sg:explorer/license/
32 sgo:sdDataset articles
33 rdf:type schema:ScholarlyArticle
34 N599217274dfe494cb40bee5b2d4d9167 schema:name readcube_id
35 schema:value 22c3634a15d73f7774d99773bf870cb707231a5727456c883b66bf2d4969ccad
36 rdf:type schema:PropertyValue
37 N5fe646e7add04e67bf73dd2082a42c31 schema:name dimensions_id
38 schema:value pub.1007298108
39 rdf:type schema:PropertyValue
40 N67994d74ab634dc0946637f4e9f68398 schema:volumeNumber 88
41 rdf:type schema:PublicationVolume
42 N77a1c10d7aa2458d8e3d3be737cf4ac4 rdf:first sg:person.013264055706.89
43 rdf:rest rdf:nil
44 N971fee5df06d4cd1a55fba3f4c2836e7 schema:name doi
45 schema:value 10.1007/bf01211953
46 rdf:type schema:PropertyValue
47 Na9bf52b29b9b46b5bf874ec806a7eca2 schema:name Springer Nature - SN SciGraph project
48 rdf:type schema:Organization
49 Nec56a3d0e51e405ca7be22c9ff037e50 schema:issueNumber 4
50 rdf:type schema:PublicationIssue
51 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
52 schema:name Mathematical Sciences
53 rdf:type schema:DefinedTerm
54 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
55 schema:name Pure Mathematics
56 rdf:type schema:DefinedTerm
57 sg:journal.1136216 schema:issn 0010-3616
58 1432-0916
59 schema:name Communications in Mathematical Physics
60 rdf:type schema:Periodical
61 sg:person.013264055706.89 schema:affiliation https://www.grid.ac/institutes/grid.5801.c
62 schema:familyName Pöschel
63 schema:givenName Jürgen
64 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013264055706.89
65 rdf:type schema:Person
66 sg:pub.10.1007/bf01206883 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012813078
67 https://doi.org/10.1007/bf01206883
68 rdf:type schema:CreativeWork
69 sg:pub.10.1007/bf01206947 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052820454
70 https://doi.org/10.1007/bf01206947
71 rdf:type schema:CreativeWork
72 sg:pub.10.1007/bf01208483 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021268290
73 https://doi.org/10.1007/bf01208483
74 rdf:type schema:CreativeWork
75 sg:pub.10.1007/bf01209477 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001325321
76 https://doi.org/10.1007/bf01209477
77 rdf:type schema:CreativeWork
78 sg:pub.10.1007/bf01211954 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040700356
79 https://doi.org/10.1007/bf01211954
80 rdf:type schema:CreativeWork
81 sg:pub.10.1007/bf01399536 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052187208
82 https://doi.org/10.1007/bf01399536
83 rdf:type schema:CreativeWork
84 https://doi.org/10.1111/j.1749-6632.1980.tb29679.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1039634224
85 rdf:type schema:CreativeWork
86 https://www.grid.ac/institutes/grid.5801.c schema:alternateName Swiss Federal Institute of Technology in Zurich
87 schema:name Mathematik, ETH-Zentrum, CH-8092, Zürich, Switzerland
88 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...