Formation of singularities in three-dimensional compressible fluids View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1985-12

AUTHORS

Thomas C. Sideris

ABSTRACT

Presented are several results on the formation of singularities in solutions to the three-dimensional Euler equations for a polytropic, ideal fluid under various assumptions on the initial data. In particular, it is shown that a localized fluid which is initially compressed and outgoing, on average, will develop singularities regardless of the size of the initial disturbance. More... »

PAGES

475-485

References to SciGraph publications

  • 1975-09. The Cauchy problem for quasi-linear symmetric hyperbolic systems in ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS
  • 1984-12. Formation of singularities in solutions to nonlinear hyperbolic equations in ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/bf01210741

    DOI

    http://dx.doi.org/10.1007/bf01210741

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1027192017


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "University of California, Santa Barbara", 
              "id": "https://www.grid.ac/institutes/grid.133342.4", 
              "name": [
                "Department of Mathematics, University of California, 93106, Santa Barbara, California, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Sideris", 
            "givenName": "Thomas C.", 
            "id": "sg:person.0604472010.05", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0604472010.05"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf00280033", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011725423", 
              "https://doi.org/10.1007/bf00280033"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00280033", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011725423", 
              "https://doi.org/10.1007/bf00280033"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/03605308308820304", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026133954"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/cpa.3160350503", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026522722"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/cpa.3160350503", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026522722"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/cpa.3160330304", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029887660"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/cpa.3160330304", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029887660"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/cpa.3160270307", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035242570"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/cpa.3160270307", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035242570"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0022-0396(79)90082-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047260281"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00280740", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048254892", 
              "https://doi.org/10.1007/bf00280740"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00280740", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048254892", 
              "https://doi.org/10.1007/bf00280740"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.1704154", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057774096"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1985-12", 
        "datePublishedReg": "1985-12-01", 
        "description": "Presented are several results on the formation of singularities in solutions to the three-dimensional Euler equations for a polytropic, ideal fluid under various assumptions on the initial data. In particular, it is shown that a localized fluid which is initially compressed and outgoing, on average, will develop singularities regardless of the size of the initial disturbance.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/bf01210741", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1136216", 
            "issn": [
              "0010-3616", 
              "1432-0916"
            ], 
            "name": "Communications in Mathematical Physics", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "4", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "101"
          }
        ], 
        "name": "Formation of singularities in three-dimensional compressible fluids", 
        "pagination": "475-485", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "8188070b34b78a076feae25fe0bd7cd3bf0966252a14a457a28e9326ebc6592e"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/bf01210741"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1027192017"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/bf01210741", 
          "https://app.dimensions.ai/details/publication/pub.1027192017"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T13:35", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000370_0000000370/records_46775_00000001.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007/BF01210741"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01210741'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01210741'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01210741'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01210741'


     

    This table displays all metadata directly associated to this object as RDF triples.

    87 TRIPLES      21 PREDICATES      35 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/bf01210741 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author N14804c586d464ffb99f8bbccd3112ce9
    4 schema:citation sg:pub.10.1007/bf00280033
    5 sg:pub.10.1007/bf00280740
    6 https://doi.org/10.1002/cpa.3160270307
    7 https://doi.org/10.1002/cpa.3160330304
    8 https://doi.org/10.1002/cpa.3160350503
    9 https://doi.org/10.1016/0022-0396(79)90082-2
    10 https://doi.org/10.1063/1.1704154
    11 https://doi.org/10.1080/03605308308820304
    12 schema:datePublished 1985-12
    13 schema:datePublishedReg 1985-12-01
    14 schema:description Presented are several results on the formation of singularities in solutions to the three-dimensional Euler equations for a polytropic, ideal fluid under various assumptions on the initial data. In particular, it is shown that a localized fluid which is initially compressed and outgoing, on average, will develop singularities regardless of the size of the initial disturbance.
    15 schema:genre research_article
    16 schema:inLanguage en
    17 schema:isAccessibleForFree false
    18 schema:isPartOf N7aaf57c588114e3a949655bd1529efc2
    19 Nc78fa9ebcd2a44318017a42ea7ee99b1
    20 sg:journal.1136216
    21 schema:name Formation of singularities in three-dimensional compressible fluids
    22 schema:pagination 475-485
    23 schema:productId N69e4fe9e9ac94343b810aa42988eeaff
    24 N6fed254d98c34e1e8c431ade6ff97e25
    25 Nc62d057dcf23469dadf83907349088a7
    26 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027192017
    27 https://doi.org/10.1007/bf01210741
    28 schema:sdDatePublished 2019-04-11T13:35
    29 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    30 schema:sdPublisher N2a2b9f9501424666a52f5ea497b0221c
    31 schema:url http://link.springer.com/10.1007/BF01210741
    32 sgo:license sg:explorer/license/
    33 sgo:sdDataset articles
    34 rdf:type schema:ScholarlyArticle
    35 N14804c586d464ffb99f8bbccd3112ce9 rdf:first sg:person.0604472010.05
    36 rdf:rest rdf:nil
    37 N2a2b9f9501424666a52f5ea497b0221c schema:name Springer Nature - SN SciGraph project
    38 rdf:type schema:Organization
    39 N69e4fe9e9ac94343b810aa42988eeaff schema:name readcube_id
    40 schema:value 8188070b34b78a076feae25fe0bd7cd3bf0966252a14a457a28e9326ebc6592e
    41 rdf:type schema:PropertyValue
    42 N6fed254d98c34e1e8c431ade6ff97e25 schema:name doi
    43 schema:value 10.1007/bf01210741
    44 rdf:type schema:PropertyValue
    45 N7aaf57c588114e3a949655bd1529efc2 schema:issueNumber 4
    46 rdf:type schema:PublicationIssue
    47 Nc62d057dcf23469dadf83907349088a7 schema:name dimensions_id
    48 schema:value pub.1027192017
    49 rdf:type schema:PropertyValue
    50 Nc78fa9ebcd2a44318017a42ea7ee99b1 schema:volumeNumber 101
    51 rdf:type schema:PublicationVolume
    52 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    53 schema:name Mathematical Sciences
    54 rdf:type schema:DefinedTerm
    55 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    56 schema:name Pure Mathematics
    57 rdf:type schema:DefinedTerm
    58 sg:journal.1136216 schema:issn 0010-3616
    59 1432-0916
    60 schema:name Communications in Mathematical Physics
    61 rdf:type schema:Periodical
    62 sg:person.0604472010.05 schema:affiliation https://www.grid.ac/institutes/grid.133342.4
    63 schema:familyName Sideris
    64 schema:givenName Thomas C.
    65 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0604472010.05
    66 rdf:type schema:Person
    67 sg:pub.10.1007/bf00280033 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011725423
    68 https://doi.org/10.1007/bf00280033
    69 rdf:type schema:CreativeWork
    70 sg:pub.10.1007/bf00280740 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048254892
    71 https://doi.org/10.1007/bf00280740
    72 rdf:type schema:CreativeWork
    73 https://doi.org/10.1002/cpa.3160270307 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035242570
    74 rdf:type schema:CreativeWork
    75 https://doi.org/10.1002/cpa.3160330304 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029887660
    76 rdf:type schema:CreativeWork
    77 https://doi.org/10.1002/cpa.3160350503 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026522722
    78 rdf:type schema:CreativeWork
    79 https://doi.org/10.1016/0022-0396(79)90082-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047260281
    80 rdf:type schema:CreativeWork
    81 https://doi.org/10.1063/1.1704154 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057774096
    82 rdf:type schema:CreativeWork
    83 https://doi.org/10.1080/03605308308820304 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026133954
    84 rdf:type schema:CreativeWork
    85 https://www.grid.ac/institutes/grid.133342.4 schema:alternateName University of California, Santa Barbara
    86 schema:name Department of Mathematics, University of California, 93106, Santa Barbara, California, USA
    87 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...