Bäcklund transformations for nonlinear sigma models with values in Riemannian symmetric spaces View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1984-09

AUTHORS

J. Harnad, Y. Saint-Aubin, S. Shnider

ABSTRACT

This work deals with Bäcklund transformations for the principal SL(n, ℂ) sigma model together with all reduced models with values in Riemannian symmetric spaces. First, the dressing method of Zakharov, Mikhailov, and Shabat is shown, for the case of a meromorphic dressing matrix, to be equivalent to a Bäcklund transformation for an associated, linearly extended system. Comparison of this multi-Bäcklund transformation with the composition of ordinary ones leads to a new proof of the permutability theorem. A new method of solution for such multi-Bäcklund transformations (MBT) is developed, by the introduction of a “soliton correlation matrix” which satisfies a Riccati system equivalent to the MBT. Using the geometric structure of this system, a linearization is achieved, leading to a nonlinear superposition formula expressing the solution explicitly in terms of solutions of a single Bäcklund transformation through purely linear algebraic relations. A systematic study of all reductions of the system by involutive automorphisms is made, thereby defining the multi-Bäcklund transformations and their solution for all Riemannian symmetric spaces. More... »

PAGES

329-367

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf01210726

DOI

http://dx.doi.org/10.1007/bf01210726

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1052011970


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Mathematics, McGill University, H3C 2T8, Montr\u00e9al, Canada", 
          "id": "http://www.grid.ac/institutes/grid.14709.3b", 
          "name": [
            "Centre de Recherche de Math\u00e9matiques Appliqu\u00e9es, Universit\u00e9 de Montr\u00e9al, H3C 3J7, Montr\u00e9al, Canada", 
            "Department of Mathematics, McGill University, H3C 2T8, Montr\u00e9al, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Harnad", 
        "givenName": "J.", 
        "id": "sg:person.0600017576.46", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0600017576.46"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Center for Theoretical Physics, Massachusetts Institute of Technology, 02139, Cambridge, MA, USA", 
          "id": "http://www.grid.ac/institutes/grid.116068.8", 
          "name": [
            "Center for Theoretical Physics, Massachusetts Institute of Technology, 02139, Cambridge, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Saint-Aubin", 
        "givenName": "Y.", 
        "id": "sg:person.014471223371.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014471223371.28"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Mathematics, McGill University, H3C 2T8, Montr\u00e9al, Canada", 
          "id": "http://www.grid.ac/institutes/grid.14709.3b", 
          "name": [
            "Centre de Recherche de Math\u00e9matiques Appliqu\u00e9es, Universit\u00e9 de Montr\u00e9al, H3C 3J7, Montr\u00e9al, Canada", 
            "Department of Mathematics, McGill University, H3C 2T8, Montr\u00e9al, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shnider", 
        "givenName": "S.", 
        "id": "sg:person.014707455173.64", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014707455173.64"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf00405864", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038016772", 
          "https://doi.org/10.1007/bf00405864"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01197576", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050805078", 
          "https://doi.org/10.1007/bf01197576"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01609119", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052377673", 
          "https://doi.org/10.1007/bf01609119"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1984-09", 
    "datePublishedReg": "1984-09-01", 
    "description": "This work deals with B\u00e4cklund transformations for the principal SL(n, \u2102) sigma model together with all reduced models with values in Riemannian symmetric spaces. First, the dressing method of Zakharov, Mikhailov, and Shabat is shown, for the case of a meromorphic dressing matrix, to be equivalent to a B\u00e4cklund transformation for an associated, linearly extended system. Comparison of this multi-B\u00e4cklund transformation with the composition of ordinary ones leads to a new proof of the permutability theorem. A new method of solution for such multi-B\u00e4cklund transformations (MBT) is developed, by the introduction of a \u201csoliton correlation matrix\u201d which satisfies a Riccati system equivalent to the MBT. Using the geometric structure of this system, a linearization is achieved, leading to a nonlinear superposition formula expressing the solution explicitly in terms of solutions of a single B\u00e4cklund transformation through purely linear algebraic relations. A systematic study of all reductions of the system by involutive automorphisms is made, thereby defining the multi-B\u00e4cklund transformations and their solution for all Riemannian symmetric spaces.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/bf01210726", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136216", 
        "issn": [
          "0010-3616", 
          "1432-0916"
        ], 
        "name": "Communications in Mathematical Physics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "92"
      }
    ], 
    "keywords": [
      "Riemannian symmetric spaces", 
      "B\u00e4cklund transformation", 
      "symmetric spaces", 
      "sigma model", 
      "linear algebraic relations", 
      "terms of solutions", 
      "nonlinear superposition formula", 
      "nonlinear sigma model", 
      "Riccati system", 
      "permutability theorem", 
      "algebraic relations", 
      "superposition formula", 
      "involutive automorphism", 
      "geometric structure", 
      "new proof", 
      "dressing method", 
      "extended system", 
      "ordinary ones", 
      "correlation matrix", 
      "space", 
      "solution", 
      "Shabat", 
      "new method", 
      "linearization", 
      "theorem", 
      "automorphisms", 
      "Zakharov", 
      "Mikhailov", 
      "matrix", 
      "model", 
      "system", 
      "transformation", 
      "proof", 
      "formula", 
      "terms", 
      "one", 
      "systematic study", 
      "values", 
      "cases", 
      "work", 
      "introduction", 
      "structure", 
      "comparison", 
      "relation", 
      "reduction", 
      "study", 
      "composition", 
      "method", 
      "meromorphic dressing matrix", 
      "dressing matrix", 
      "multi-B\u00e4cklund transformations", 
      "such multi-B\u00e4cklund transformations", 
      "soliton correlation matrix", 
      "single B\u00e4cklund transformation"
    ], 
    "name": "B\u00e4cklund transformations for nonlinear sigma models with values in Riemannian symmetric spaces", 
    "pagination": "329-367", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1052011970"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf01210726"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf01210726", 
      "https://app.dimensions.ai/details/publication/pub.1052011970"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-12-01T19:05", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_181.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/bf01210726"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01210726'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01210726'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01210726'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01210726'


 

This table displays all metadata directly associated to this object as RDF triples.

142 TRIPLES      22 PREDICATES      83 URIs      72 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf01210726 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N3d2f0bcca1524a56bc43a5ee1f0ad1a3
4 schema:citation sg:pub.10.1007/bf00405864
5 sg:pub.10.1007/bf01197576
6 sg:pub.10.1007/bf01609119
7 schema:datePublished 1984-09
8 schema:datePublishedReg 1984-09-01
9 schema:description This work deals with Bäcklund transformations for the principal SL(n, ℂ) sigma model together with all reduced models with values in Riemannian symmetric spaces. First, the dressing method of Zakharov, Mikhailov, and Shabat is shown, for the case of a meromorphic dressing matrix, to be equivalent to a Bäcklund transformation for an associated, linearly extended system. Comparison of this multi-Bäcklund transformation with the composition of ordinary ones leads to a new proof of the permutability theorem. A new method of solution for such multi-Bäcklund transformations (MBT) is developed, by the introduction of a “soliton correlation matrix” which satisfies a Riccati system equivalent to the MBT. Using the geometric structure of this system, a linearization is achieved, leading to a nonlinear superposition formula expressing the solution explicitly in terms of solutions of a single Bäcklund transformation through purely linear algebraic relations. A systematic study of all reductions of the system by involutive automorphisms is made, thereby defining the multi-Bäcklund transformations and their solution for all Riemannian symmetric spaces.
10 schema:genre article
11 schema:inLanguage en
12 schema:isAccessibleForFree false
13 schema:isPartOf N196cd7a4f9d54227a63aa0f3b63475f0
14 Ne8a3f69c2345407cbd426cf44109d64c
15 sg:journal.1136216
16 schema:keywords Bäcklund transformation
17 Mikhailov
18 Riccati system
19 Riemannian symmetric spaces
20 Shabat
21 Zakharov
22 algebraic relations
23 automorphisms
24 cases
25 comparison
26 composition
27 correlation matrix
28 dressing matrix
29 dressing method
30 extended system
31 formula
32 geometric structure
33 introduction
34 involutive automorphism
35 linear algebraic relations
36 linearization
37 matrix
38 meromorphic dressing matrix
39 method
40 model
41 multi-Bäcklund transformations
42 new method
43 new proof
44 nonlinear sigma model
45 nonlinear superposition formula
46 one
47 ordinary ones
48 permutability theorem
49 proof
50 reduction
51 relation
52 sigma model
53 single Bäcklund transformation
54 soliton correlation matrix
55 solution
56 space
57 structure
58 study
59 such multi-Bäcklund transformations
60 superposition formula
61 symmetric spaces
62 system
63 systematic study
64 terms
65 terms of solutions
66 theorem
67 transformation
68 values
69 work
70 schema:name Bäcklund transformations for nonlinear sigma models with values in Riemannian symmetric spaces
71 schema:pagination 329-367
72 schema:productId N673e87bc588445be9d812f44aa8cda9d
73 Nde9307c8d1b7464a9293f850e18a5655
74 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052011970
75 https://doi.org/10.1007/bf01210726
76 schema:sdDatePublished 2021-12-01T19:05
77 schema:sdLicense https://scigraph.springernature.com/explorer/license/
78 schema:sdPublisher N0696b88431a0428fa2cb8b82ded14c6f
79 schema:url https://doi.org/10.1007/bf01210726
80 sgo:license sg:explorer/license/
81 sgo:sdDataset articles
82 rdf:type schema:ScholarlyArticle
83 N0669eee41ad1443ea65e857f78cdd1ea rdf:first sg:person.014707455173.64
84 rdf:rest rdf:nil
85 N0696b88431a0428fa2cb8b82ded14c6f schema:name Springer Nature - SN SciGraph project
86 rdf:type schema:Organization
87 N0c7339db53e9421bb49811dd84cb784b rdf:first sg:person.014471223371.28
88 rdf:rest N0669eee41ad1443ea65e857f78cdd1ea
89 N196cd7a4f9d54227a63aa0f3b63475f0 schema:issueNumber 3
90 rdf:type schema:PublicationIssue
91 N3d2f0bcca1524a56bc43a5ee1f0ad1a3 rdf:first sg:person.0600017576.46
92 rdf:rest N0c7339db53e9421bb49811dd84cb784b
93 N673e87bc588445be9d812f44aa8cda9d schema:name dimensions_id
94 schema:value pub.1052011970
95 rdf:type schema:PropertyValue
96 Nde9307c8d1b7464a9293f850e18a5655 schema:name doi
97 schema:value 10.1007/bf01210726
98 rdf:type schema:PropertyValue
99 Ne8a3f69c2345407cbd426cf44109d64c schema:volumeNumber 92
100 rdf:type schema:PublicationVolume
101 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
102 schema:name Mathematical Sciences
103 rdf:type schema:DefinedTerm
104 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
105 schema:name Pure Mathematics
106 rdf:type schema:DefinedTerm
107 sg:journal.1136216 schema:issn 0010-3616
108 1432-0916
109 schema:name Communications in Mathematical Physics
110 schema:publisher Springer Nature
111 rdf:type schema:Periodical
112 sg:person.014471223371.28 schema:affiliation grid-institutes:grid.116068.8
113 schema:familyName Saint-Aubin
114 schema:givenName Y.
115 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014471223371.28
116 rdf:type schema:Person
117 sg:person.014707455173.64 schema:affiliation grid-institutes:grid.14709.3b
118 schema:familyName Shnider
119 schema:givenName S.
120 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014707455173.64
121 rdf:type schema:Person
122 sg:person.0600017576.46 schema:affiliation grid-institutes:grid.14709.3b
123 schema:familyName Harnad
124 schema:givenName J.
125 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0600017576.46
126 rdf:type schema:Person
127 sg:pub.10.1007/bf00405864 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038016772
128 https://doi.org/10.1007/bf00405864
129 rdf:type schema:CreativeWork
130 sg:pub.10.1007/bf01197576 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050805078
131 https://doi.org/10.1007/bf01197576
132 rdf:type schema:CreativeWork
133 sg:pub.10.1007/bf01609119 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052377673
134 https://doi.org/10.1007/bf01609119
135 rdf:type schema:CreativeWork
136 grid-institutes:grid.116068.8 schema:alternateName Center for Theoretical Physics, Massachusetts Institute of Technology, 02139, Cambridge, MA, USA
137 schema:name Center for Theoretical Physics, Massachusetts Institute of Technology, 02139, Cambridge, MA, USA
138 rdf:type schema:Organization
139 grid-institutes:grid.14709.3b schema:alternateName Department of Mathematics, McGill University, H3C 2T8, Montréal, Canada
140 schema:name Centre de Recherche de Mathématiques Appliquées, Université de Montréal, H3C 3J7, Montréal, Canada
141 Department of Mathematics, McGill University, H3C 2T8, Montréal, Canada
142 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...