Anderson localization for Bernoulli and other singular potentials View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1987-03

AUTHORS

Rene Carmona, Abel Klein, Fabio Martinelli

ABSTRACT

We prove exponential localization in the Anderson model under very weak assumptions on the potential distribution. In one dimension we allow any measure which is not concentrated on a single point and possesses some finite moment. In particular this solves the longstanding problem of localization for Bernoulli potentials (i.e., potentials that take only two values). In dimensions greater than one we prove localization at high disorder for potentials with Hölder continuous distributions and for bounded potentials whose distribution is a convex combination of a Hölder continuous distribution with high disorder and an arbitrary distribution. These include potentials with singular distributions. We also show that for certain Bernoulli potentials in one dimension the integrated density of states has a nontrivial singular component. More... »

PAGES

41-66

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf01210702

DOI

http://dx.doi.org/10.1007/bf01210702

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1002642648


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1701", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Psychology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/17", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Psychology and Cognitive Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of California, Irvine", 
          "id": "https://www.grid.ac/institutes/grid.266093.8", 
          "name": [
            "Department of Mathematics, University of California, 92717, Irvine, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Carmona", 
        "givenName": "Rene", 
        "id": "sg:person.014113033052.69", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014113033052.69"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of California, Irvine", 
          "id": "https://www.grid.ac/institutes/grid.266093.8", 
          "name": [
            "Department of Mathematics, University of California, 92717, Irvine, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Klein", 
        "givenName": "Abel", 
        "id": "sg:person.01301631024.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01301631024.41"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of California, Irvine", 
          "id": "https://www.grid.ac/institutes/grid.266093.8", 
          "name": [
            "Department of Mathematics, University of California, 92717, Irvine, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Martinelli", 
        "givenName": "Fabio", 
        "id": "sg:person.016521145011.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016521145011.31"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf01942371", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000362893", 
          "https://doi.org/10.1007/bf01942371"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01942371", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000362893", 
          "https://doi.org/10.1007/bf01942371"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01292646", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003562590", 
          "https://doi.org/10.1007/bf01292646"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01292646", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003562590", 
          "https://doi.org/10.1007/bf01292646"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01211591", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004369583", 
          "https://doi.org/10.1007/bf01211591"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01211591", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004369583", 
          "https://doi.org/10.1007/bf01211591"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0378-4371(84)90236-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006349341"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0378-4371(84)90236-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006349341"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cpa.3160390105", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007461009"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cpa.3160390105", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007461009"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01222516", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011547411", 
          "https://doi.org/10.1007/bf01222516"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01222516", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011547411", 
          "https://doi.org/10.1007/bf01222516"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01209475", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011949639", 
          "https://doi.org/10.1007/bf01209475"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01223744", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025207075", 
          "https://doi.org/10.1007/bf01223744"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01223744", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025207075", 
          "https://doi.org/10.1007/bf01223744"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01212355", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029360644", 
          "https://doi.org/10.1007/bf01212355"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4684-9172-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030336791", 
          "https://doi.org/10.1007/978-1-4684-9172-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4684-9172-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030336791", 
          "https://doi.org/10.1007/978-1-4684-9172-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01212354", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037567153", 
          "https://doi.org/10.1007/bf01212354"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01212354", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037567153", 
          "https://doi.org/10.1007/bf01212354"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01009014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038421197", 
          "https://doi.org/10.1007/bf01009014"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0001-8708(80)90024-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046914194"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bfb0073650", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047334060", 
          "https://doi.org/10.1007/bfb0073650"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01217724", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049765970", 
          "https://doi.org/10.1007/bf01217724"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01217724", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049765970", 
          "https://doi.org/10.1007/bf01217724"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01463399", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050617943", 
          "https://doi.org/10.1007/bf01463399"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01463399", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050617943", 
          "https://doi.org/10.1007/bf01463399"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01213410", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051166685", 
          "https://doi.org/10.1007/bf01213410"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01213410", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051166685", 
          "https://doi.org/10.1007/bf01213410"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1051/jphyslet:019830044011041100", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057009509"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0022-3719/6/10/009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058966587"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0305-4470/16/1/012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059066323"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/conm/050/841099", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1089197978"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1987-03", 
    "datePublishedReg": "1987-03-01", 
    "description": "We prove exponential localization in the Anderson model under very weak assumptions on the potential distribution. In one dimension we allow any measure which is not concentrated on a single point and possesses some finite moment. In particular this solves the longstanding problem of localization for Bernoulli potentials (i.e., potentials that take only two values). In dimensions greater than one we prove localization at high disorder for potentials with H\u00f6lder continuous distributions and for bounded potentials whose distribution is a convex combination of a H\u00f6lder continuous distribution with high disorder and an arbitrary distribution. These include potentials with singular distributions. We also show that for certain Bernoulli potentials in one dimension the integrated density of states has a nontrivial singular component.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf01210702", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136216", 
        "issn": [
          "0010-3616", 
          "1432-0916"
        ], 
        "name": "Communications in Mathematical Physics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "108"
      }
    ], 
    "name": "Anderson localization for Bernoulli and other singular potentials", 
    "pagination": "41-66", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "0c94fdc9de6c5ce8e357e59d6066990518598a06ef428afa2ec11cb671040780"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf01210702"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1002642648"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf01210702", 
      "https://app.dimensions.ai/details/publication/pub.1002642648"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:34", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000370_0000000370/records_46772_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/BF01210702"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01210702'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01210702'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01210702'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01210702'


 

This table displays all metadata directly associated to this object as RDF triples.

152 TRIPLES      21 PREDICATES      48 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf01210702 schema:about anzsrc-for:17
2 anzsrc-for:1701
3 schema:author Nd331f298721949f4a3796b1da4260702
4 schema:citation sg:pub.10.1007/978-1-4684-9172-2
5 sg:pub.10.1007/bf01009014
6 sg:pub.10.1007/bf01209475
7 sg:pub.10.1007/bf01211591
8 sg:pub.10.1007/bf01212354
9 sg:pub.10.1007/bf01212355
10 sg:pub.10.1007/bf01213410
11 sg:pub.10.1007/bf01217724
12 sg:pub.10.1007/bf01222516
13 sg:pub.10.1007/bf01223744
14 sg:pub.10.1007/bf01292646
15 sg:pub.10.1007/bf01463399
16 sg:pub.10.1007/bf01942371
17 sg:pub.10.1007/bfb0073650
18 https://doi.org/10.1002/cpa.3160390105
19 https://doi.org/10.1016/0001-8708(80)90024-9
20 https://doi.org/10.1016/0378-4371(84)90236-x
21 https://doi.org/10.1051/jphyslet:019830044011041100
22 https://doi.org/10.1088/0022-3719/6/10/009
23 https://doi.org/10.1088/0305-4470/16/1/012
24 https://doi.org/10.1090/conm/050/841099
25 schema:datePublished 1987-03
26 schema:datePublishedReg 1987-03-01
27 schema:description We prove exponential localization in the Anderson model under very weak assumptions on the potential distribution. In one dimension we allow any measure which is not concentrated on a single point and possesses some finite moment. In particular this solves the longstanding problem of localization for Bernoulli potentials (i.e., potentials that take only two values). In dimensions greater than one we prove localization at high disorder for potentials with Hölder continuous distributions and for bounded potentials whose distribution is a convex combination of a Hölder continuous distribution with high disorder and an arbitrary distribution. These include potentials with singular distributions. We also show that for certain Bernoulli potentials in one dimension the integrated density of states has a nontrivial singular component.
28 schema:genre research_article
29 schema:inLanguage en
30 schema:isAccessibleForFree false
31 schema:isPartOf N253b965209454ee1ad021d38b37a3065
32 N713354be92574d998ef0f48cfb30ba08
33 sg:journal.1136216
34 schema:name Anderson localization for Bernoulli and other singular potentials
35 schema:pagination 41-66
36 schema:productId N5d8064368d99424d9b293385109732f7
37 N731568d87e454451b67eef4f87c0ed44
38 Nb559f144352f446393a3c41c21defff8
39 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002642648
40 https://doi.org/10.1007/bf01210702
41 schema:sdDatePublished 2019-04-11T13:34
42 schema:sdLicense https://scigraph.springernature.com/explorer/license/
43 schema:sdPublisher Nb1063b94dbae449da70e7983e2e70c75
44 schema:url http://link.springer.com/10.1007/BF01210702
45 sgo:license sg:explorer/license/
46 sgo:sdDataset articles
47 rdf:type schema:ScholarlyArticle
48 N253b965209454ee1ad021d38b37a3065 schema:volumeNumber 108
49 rdf:type schema:PublicationVolume
50 N5d8064368d99424d9b293385109732f7 schema:name dimensions_id
51 schema:value pub.1002642648
52 rdf:type schema:PropertyValue
53 N686ac5b2bda34854a49624943f596c7d rdf:first sg:person.01301631024.41
54 rdf:rest Nf14ed9c78ff84499beef6a5b8cdef69e
55 N713354be92574d998ef0f48cfb30ba08 schema:issueNumber 1
56 rdf:type schema:PublicationIssue
57 N731568d87e454451b67eef4f87c0ed44 schema:name doi
58 schema:value 10.1007/bf01210702
59 rdf:type schema:PropertyValue
60 Nb1063b94dbae449da70e7983e2e70c75 schema:name Springer Nature - SN SciGraph project
61 rdf:type schema:Organization
62 Nb559f144352f446393a3c41c21defff8 schema:name readcube_id
63 schema:value 0c94fdc9de6c5ce8e357e59d6066990518598a06ef428afa2ec11cb671040780
64 rdf:type schema:PropertyValue
65 Nd331f298721949f4a3796b1da4260702 rdf:first sg:person.014113033052.69
66 rdf:rest N686ac5b2bda34854a49624943f596c7d
67 Nf14ed9c78ff84499beef6a5b8cdef69e rdf:first sg:person.016521145011.31
68 rdf:rest rdf:nil
69 anzsrc-for:17 schema:inDefinedTermSet anzsrc-for:
70 schema:name Psychology and Cognitive Sciences
71 rdf:type schema:DefinedTerm
72 anzsrc-for:1701 schema:inDefinedTermSet anzsrc-for:
73 schema:name Psychology
74 rdf:type schema:DefinedTerm
75 sg:journal.1136216 schema:issn 0010-3616
76 1432-0916
77 schema:name Communications in Mathematical Physics
78 rdf:type schema:Periodical
79 sg:person.01301631024.41 schema:affiliation https://www.grid.ac/institutes/grid.266093.8
80 schema:familyName Klein
81 schema:givenName Abel
82 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01301631024.41
83 rdf:type schema:Person
84 sg:person.014113033052.69 schema:affiliation https://www.grid.ac/institutes/grid.266093.8
85 schema:familyName Carmona
86 schema:givenName Rene
87 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014113033052.69
88 rdf:type schema:Person
89 sg:person.016521145011.31 schema:affiliation https://www.grid.ac/institutes/grid.266093.8
90 schema:familyName Martinelli
91 schema:givenName Fabio
92 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016521145011.31
93 rdf:type schema:Person
94 sg:pub.10.1007/978-1-4684-9172-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030336791
95 https://doi.org/10.1007/978-1-4684-9172-2
96 rdf:type schema:CreativeWork
97 sg:pub.10.1007/bf01009014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038421197
98 https://doi.org/10.1007/bf01009014
99 rdf:type schema:CreativeWork
100 sg:pub.10.1007/bf01209475 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011949639
101 https://doi.org/10.1007/bf01209475
102 rdf:type schema:CreativeWork
103 sg:pub.10.1007/bf01211591 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004369583
104 https://doi.org/10.1007/bf01211591
105 rdf:type schema:CreativeWork
106 sg:pub.10.1007/bf01212354 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037567153
107 https://doi.org/10.1007/bf01212354
108 rdf:type schema:CreativeWork
109 sg:pub.10.1007/bf01212355 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029360644
110 https://doi.org/10.1007/bf01212355
111 rdf:type schema:CreativeWork
112 sg:pub.10.1007/bf01213410 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051166685
113 https://doi.org/10.1007/bf01213410
114 rdf:type schema:CreativeWork
115 sg:pub.10.1007/bf01217724 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049765970
116 https://doi.org/10.1007/bf01217724
117 rdf:type schema:CreativeWork
118 sg:pub.10.1007/bf01222516 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011547411
119 https://doi.org/10.1007/bf01222516
120 rdf:type schema:CreativeWork
121 sg:pub.10.1007/bf01223744 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025207075
122 https://doi.org/10.1007/bf01223744
123 rdf:type schema:CreativeWork
124 sg:pub.10.1007/bf01292646 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003562590
125 https://doi.org/10.1007/bf01292646
126 rdf:type schema:CreativeWork
127 sg:pub.10.1007/bf01463399 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050617943
128 https://doi.org/10.1007/bf01463399
129 rdf:type schema:CreativeWork
130 sg:pub.10.1007/bf01942371 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000362893
131 https://doi.org/10.1007/bf01942371
132 rdf:type schema:CreativeWork
133 sg:pub.10.1007/bfb0073650 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047334060
134 https://doi.org/10.1007/bfb0073650
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1002/cpa.3160390105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007461009
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1016/0001-8708(80)90024-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046914194
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1016/0378-4371(84)90236-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1006349341
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1051/jphyslet:019830044011041100 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057009509
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1088/0022-3719/6/10/009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058966587
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1088/0305-4470/16/1/012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059066323
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1090/conm/050/841099 schema:sameAs https://app.dimensions.ai/details/publication/pub.1089197978
149 rdf:type schema:CreativeWork
150 https://www.grid.ac/institutes/grid.266093.8 schema:alternateName University of California, Irvine
151 schema:name Department of Mathematics, University of California, 92717, Irvine, CA, USA
152 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...