Nonlinear parabolic stochastic differential equations with additive colored noise onRd ×R+: A regulated stochastic quantization View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1987-12

AUTHORS

Charles R. Doering

ABSTRACT

We prove the existence of solutions to the nonlinear parabolic stochastic differential equation for polynomialsV of even degree with positive leading coefficient and νc a gaussian colored noise process onRd×R+. When νc is colored enough that the gaussian solution to the linear problem has Hölder continuous covariance, the nongaussian processes are almost surely realized by continuous functions. Uniqueness, regularity properties, asymptotic perturbation expansions and nonperturbative fluctuation bounds are obtained for the infinite volume processes. These equations are a cutoff version of the Parisi-Wu stochastic quantization procedure forP(ϕ)d models, and the results of this paper rigorously establish the nonperturbative nature of regularization via modification of the noise process. In the limit νc → gaussian white noise we find that the asymptotic expansion and the rigorous bounds agree for processes corresponding to the (regulated) stochastic quantization of super-renormalizable and small coupling, strictly renormalizable scalar field theories and disagree for nonrenormalizable models. More... »

PAGES

537-561

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf01208957

DOI

http://dx.doi.org/10.1007/bf01208957

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1035485456


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "The University of Texas at Austin", 
          "id": "https://www.grid.ac/institutes/grid.89336.37", 
          "name": [
            "Department of Physics, Center for Relativity and Department of Astronomy, The University of Texas at Austin, 78712, Austin, Texas, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Doering", 
        "givenName": "Charles R.", 
        "id": "sg:person.01161117310.79", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01161117310.79"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf01216097", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006856534", 
          "https://doi.org/10.1007/bf01216097"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01216097", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006856534", 
          "https://doi.org/10.1007/bf01216097"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-1236(78)90031-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012639955"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0550-3213(83)90240-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022898655"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0550-3213(83)90240-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022898655"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0550-3213(87)90026-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031339119"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0550-3213(87)90026-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031339119"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01010500", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046866600", 
          "https://doi.org/10.1007/bf01010500"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0550-3213(84)90170-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047246534"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0550-3213(84)90170-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047246534"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/s0002-9947-1974-0346909-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048712520"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0305-4470/15/10/011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059065875"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.31.1349", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060692384"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.31.1349", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060692384"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.33.1184", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060693309"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.33.1184", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060693309"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.54.369", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060791710"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.54.369", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060791710"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.55.1947", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060792234"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.55.1947", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060792234"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1143/ptp.70.298", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063139248"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2140/pjm.1979.84.143", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069067639"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1987-12", 
    "datePublishedReg": "1987-12-01", 
    "description": "We prove the existence of solutions to the nonlinear parabolic stochastic differential equation for polynomialsV of even degree with positive leading coefficient and \u03bdc a gaussian colored noise process onRd\u00d7R+. When \u03bdc is colored enough that the gaussian solution to the linear problem has H\u00f6lder continuous covariance, the nongaussian processes are almost surely realized by continuous functions. Uniqueness, regularity properties, asymptotic perturbation expansions and nonperturbative fluctuation bounds are obtained for the infinite volume processes. These equations are a cutoff version of the Parisi-Wu stochastic quantization procedure forP(\u03d5)d models, and the results of this paper rigorously establish the nonperturbative nature of regularization via modification of the noise process. In the limit \u03bdc \u2192 gaussian white noise we find that the asymptotic expansion and the rigorous bounds agree for processes corresponding to the (regulated) stochastic quantization of super-renormalizable and small coupling, strictly renormalizable scalar field theories and disagree for nonrenormalizable models.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf01208957", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136216", 
        "issn": [
          "0010-3616", 
          "1432-0916"
        ], 
        "name": "Communications in Mathematical Physics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "109"
      }
    ], 
    "name": "Nonlinear parabolic stochastic differential equations with additive colored noise onRd \u00d7R+: A regulated stochastic quantization", 
    "pagination": "537-561", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "a909c79ddb4e89607cdda9577bc2d9ec61ded1b3b01ae54fcf0ab875533c892f"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf01208957"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1035485456"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf01208957", 
      "https://app.dimensions.ai/details/publication/pub.1035485456"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:32", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000370_0000000370/records_46765_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/BF01208957"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01208957'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01208957'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01208957'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01208957'


 

This table displays all metadata directly associated to this object as RDF triples.

105 TRIPLES      21 PREDICATES      41 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf01208957 schema:about anzsrc-for:01
2 anzsrc-for:0104
3 schema:author Nc136658ac4ed42aebe1f9da34d650b8d
4 schema:citation sg:pub.10.1007/bf01010500
5 sg:pub.10.1007/bf01216097
6 https://doi.org/10.1016/0022-1236(78)90031-9
7 https://doi.org/10.1016/0550-3213(83)90240-7
8 https://doi.org/10.1016/0550-3213(84)90170-6
9 https://doi.org/10.1016/0550-3213(87)90026-5
10 https://doi.org/10.1088/0305-4470/15/10/011
11 https://doi.org/10.1090/s0002-9947-1974-0346909-8
12 https://doi.org/10.1103/physrevd.31.1349
13 https://doi.org/10.1103/physrevd.33.1184
14 https://doi.org/10.1103/physrevlett.54.369
15 https://doi.org/10.1103/physrevlett.55.1947
16 https://doi.org/10.1143/ptp.70.298
17 https://doi.org/10.2140/pjm.1979.84.143
18 schema:datePublished 1987-12
19 schema:datePublishedReg 1987-12-01
20 schema:description We prove the existence of solutions to the nonlinear parabolic stochastic differential equation for polynomialsV of even degree with positive leading coefficient and νc a gaussian colored noise process onRd×R+. When νc is colored enough that the gaussian solution to the linear problem has Hölder continuous covariance, the nongaussian processes are almost surely realized by continuous functions. Uniqueness, regularity properties, asymptotic perturbation expansions and nonperturbative fluctuation bounds are obtained for the infinite volume processes. These equations are a cutoff version of the Parisi-Wu stochastic quantization procedure forP(ϕ)d models, and the results of this paper rigorously establish the nonperturbative nature of regularization via modification of the noise process. In the limit νc → gaussian white noise we find that the asymptotic expansion and the rigorous bounds agree for processes corresponding to the (regulated) stochastic quantization of super-renormalizable and small coupling, strictly renormalizable scalar field theories and disagree for nonrenormalizable models.
21 schema:genre research_article
22 schema:inLanguage en
23 schema:isAccessibleForFree false
24 schema:isPartOf N0a33c8f583e14e43a62ad7842db5a146
25 N40ae3ddb6bb24281b5cdbe696d17a849
26 sg:journal.1136216
27 schema:name Nonlinear parabolic stochastic differential equations with additive colored noise onRd ×R+: A regulated stochastic quantization
28 schema:pagination 537-561
29 schema:productId N5b9a087008d04164abcb086dd87b5b2a
30 Nd4b5fc0ad08c4ec2a9674b51940d400d
31 Nf3562d77048c4a2b9c12b5791b5088e9
32 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035485456
33 https://doi.org/10.1007/bf01208957
34 schema:sdDatePublished 2019-04-11T13:32
35 schema:sdLicense https://scigraph.springernature.com/explorer/license/
36 schema:sdPublisher Nb2d5bac1e8d84229a69df850da025e6a
37 schema:url http://link.springer.com/10.1007/BF01208957
38 sgo:license sg:explorer/license/
39 sgo:sdDataset articles
40 rdf:type schema:ScholarlyArticle
41 N0a33c8f583e14e43a62ad7842db5a146 schema:volumeNumber 109
42 rdf:type schema:PublicationVolume
43 N40ae3ddb6bb24281b5cdbe696d17a849 schema:issueNumber 4
44 rdf:type schema:PublicationIssue
45 N5b9a087008d04164abcb086dd87b5b2a schema:name doi
46 schema:value 10.1007/bf01208957
47 rdf:type schema:PropertyValue
48 Nb2d5bac1e8d84229a69df850da025e6a schema:name Springer Nature - SN SciGraph project
49 rdf:type schema:Organization
50 Nc136658ac4ed42aebe1f9da34d650b8d rdf:first sg:person.01161117310.79
51 rdf:rest rdf:nil
52 Nd4b5fc0ad08c4ec2a9674b51940d400d schema:name readcube_id
53 schema:value a909c79ddb4e89607cdda9577bc2d9ec61ded1b3b01ae54fcf0ab875533c892f
54 rdf:type schema:PropertyValue
55 Nf3562d77048c4a2b9c12b5791b5088e9 schema:name dimensions_id
56 schema:value pub.1035485456
57 rdf:type schema:PropertyValue
58 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
59 schema:name Mathematical Sciences
60 rdf:type schema:DefinedTerm
61 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
62 schema:name Statistics
63 rdf:type schema:DefinedTerm
64 sg:journal.1136216 schema:issn 0010-3616
65 1432-0916
66 schema:name Communications in Mathematical Physics
67 rdf:type schema:Periodical
68 sg:person.01161117310.79 schema:affiliation https://www.grid.ac/institutes/grid.89336.37
69 schema:familyName Doering
70 schema:givenName Charles R.
71 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01161117310.79
72 rdf:type schema:Person
73 sg:pub.10.1007/bf01010500 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046866600
74 https://doi.org/10.1007/bf01010500
75 rdf:type schema:CreativeWork
76 sg:pub.10.1007/bf01216097 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006856534
77 https://doi.org/10.1007/bf01216097
78 rdf:type schema:CreativeWork
79 https://doi.org/10.1016/0022-1236(78)90031-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012639955
80 rdf:type schema:CreativeWork
81 https://doi.org/10.1016/0550-3213(83)90240-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022898655
82 rdf:type schema:CreativeWork
83 https://doi.org/10.1016/0550-3213(84)90170-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047246534
84 rdf:type schema:CreativeWork
85 https://doi.org/10.1016/0550-3213(87)90026-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031339119
86 rdf:type schema:CreativeWork
87 https://doi.org/10.1088/0305-4470/15/10/011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059065875
88 rdf:type schema:CreativeWork
89 https://doi.org/10.1090/s0002-9947-1974-0346909-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048712520
90 rdf:type schema:CreativeWork
91 https://doi.org/10.1103/physrevd.31.1349 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060692384
92 rdf:type schema:CreativeWork
93 https://doi.org/10.1103/physrevd.33.1184 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060693309
94 rdf:type schema:CreativeWork
95 https://doi.org/10.1103/physrevlett.54.369 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060791710
96 rdf:type schema:CreativeWork
97 https://doi.org/10.1103/physrevlett.55.1947 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060792234
98 rdf:type schema:CreativeWork
99 https://doi.org/10.1143/ptp.70.298 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063139248
100 rdf:type schema:CreativeWork
101 https://doi.org/10.2140/pjm.1979.84.143 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069067639
102 rdf:type schema:CreativeWork
103 https://www.grid.ac/institutes/grid.89336.37 schema:alternateName The University of Texas at Austin
104 schema:name Department of Physics, Center for Relativity and Department of Astronomy, The University of Texas at Austin, 78712, Austin, Texas, USA
105 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...