Elliptic genera and quantum field theory View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1987-12

AUTHORS

Edward Witten

ABSTRACT

It is shown that in elliptic cohomology — as recently formulated in the mathematical literature — the supercharge of the supersymmetric nonlinear signa model plays a role similar to the role of the Dirac operator inK-theory. This leads to several insights concerning both elliptic cohomology and string theory. Some of the relevant calculations have been done previously by Schellekens and Warner in a different context. More... »

PAGES

525-536

References to SciGraph publications

  • 1981-03. Regularized, continuum Yang-Mills process and Feynman-Kac functional integral in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 1985. The Theory of Jacobi Forms in NONE
  • 1984-12. Non-abelian bosonization in two dimensions in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 1988. Note on the Landweber-Stong elliptic genus in ELLIPTIC CURVES AND MODULAR FORMS IN ALGEBRAIC TOPOLOGY
  • 1970. Spin-Manifolds and Group Actions in ESSAYS ON TOPOLOGY AND RELATED TOPICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/bf01208956

    DOI

    http://dx.doi.org/10.1007/bf01208956

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1028655831


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Princeton University", 
              "id": "https://www.grid.ac/institutes/grid.16750.35", 
              "name": [
                "Joseph Henry Laboratories, Princeton University, 08544, Princeton, NJ, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Witten", 
            "givenName": "Edward", 
            "id": "sg:person.016240210261.17", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016240210261.17"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/978-3-642-49197-9_3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001343616", 
              "https://doi.org/10.1007/978-3-642-49197-9_3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0040-9383(87)90055-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006466102"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01215276", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015705784", 
              "https://doi.org/10.1007/bf01215276"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01215276", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015705784", 
              "https://doi.org/10.1007/bf01215276"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1024495704", 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4684-9162-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024495704", 
              "https://doi.org/10.1007/978-1-4684-9162-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4684-9162-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024495704", 
              "https://doi.org/10.1007/978-1-4684-9162-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1090/s0002-9947-1987-0882700-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025559052"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0370-2693(85)90710-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027481066"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0370-2693(85)90710-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027481066"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bfb0078047", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027837710", 
              "https://doi.org/10.1007/bfb0078047"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0370-2693(86)90760-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030606005"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0370-2693(86)90760-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030606005"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01213595", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041442021", 
              "https://doi.org/10.1007/bf01213595"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01213595", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041442021", 
              "https://doi.org/10.1007/bf01213595"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0550-3213(85)90593-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051487480"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0550-3213(85)90593-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051487480"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2307/1970715", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1069676030"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2307/1970716", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1069676031"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2307/1970756", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1069676069"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.4310/jdg/1214437492", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084459436"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1090/conm/181/02040", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1089203058"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1987-12", 
        "datePublishedReg": "1987-12-01", 
        "description": "It is shown that in elliptic cohomology \u2014 as recently formulated in the mathematical literature \u2014 the supercharge of the supersymmetric nonlinear signa model plays a role similar to the role of the Dirac operator inK-theory. This leads to several insights concerning both elliptic cohomology and string theory. Some of the relevant calculations have been done previously by Schellekens and Warner in a different context.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/bf01208956", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1136216", 
            "issn": [
              "0010-3616", 
              "1432-0916"
            ], 
            "name": "Communications in Mathematical Physics", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "4", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "109"
          }
        ], 
        "name": "Elliptic genera and quantum field theory", 
        "pagination": "525-536", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "8881c903c3194c3ce2fe70a084495043af22fb90113a0cb7b685dc9b90b9c433"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/bf01208956"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1028655831"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/bf01208956", 
          "https://app.dimensions.ai/details/publication/pub.1028655831"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T13:32", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000370_0000000370/records_46760_00000001.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007/BF01208956"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01208956'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01208956'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01208956'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01208956'


     

    This table displays all metadata directly associated to this object as RDF triples.

    113 TRIPLES      21 PREDICATES      43 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/bf01208956 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author Na54a002b4a2749b9b47ef7d60646fb1b
    4 schema:citation sg:pub.10.1007/978-1-4684-9162-3
    5 sg:pub.10.1007/978-3-642-49197-9_3
    6 sg:pub.10.1007/bf01213595
    7 sg:pub.10.1007/bf01215276
    8 sg:pub.10.1007/bfb0078047
    9 https://app.dimensions.ai/details/publication/pub.1024495704
    10 https://doi.org/10.1016/0040-9383(87)90055-3
    11 https://doi.org/10.1016/0370-2693(85)90710-5
    12 https://doi.org/10.1016/0370-2693(86)90760-4
    13 https://doi.org/10.1016/0550-3213(85)90593-0
    14 https://doi.org/10.1090/conm/181/02040
    15 https://doi.org/10.1090/s0002-9947-1987-0882700-0
    16 https://doi.org/10.2307/1970715
    17 https://doi.org/10.2307/1970716
    18 https://doi.org/10.2307/1970756
    19 https://doi.org/10.4310/jdg/1214437492
    20 schema:datePublished 1987-12
    21 schema:datePublishedReg 1987-12-01
    22 schema:description It is shown that in elliptic cohomology — as recently formulated in the mathematical literature — the supercharge of the supersymmetric nonlinear signa model plays a role similar to the role of the Dirac operator inK-theory. This leads to several insights concerning both elliptic cohomology and string theory. Some of the relevant calculations have been done previously by Schellekens and Warner in a different context.
    23 schema:genre research_article
    24 schema:inLanguage en
    25 schema:isAccessibleForFree false
    26 schema:isPartOf N49516d37df29465eb314cc3eb2e9f9b4
    27 Ndb2f50d0d80b4f64989179822f0172e5
    28 sg:journal.1136216
    29 schema:name Elliptic genera and quantum field theory
    30 schema:pagination 525-536
    31 schema:productId N04b25457b29d4f6f8201764b25f3a394
    32 N60101c6bd5e84bea9d33a4a8f8cb2835
    33 Nd60c29070184458b907e0fa5d4c5bb99
    34 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028655831
    35 https://doi.org/10.1007/bf01208956
    36 schema:sdDatePublished 2019-04-11T13:32
    37 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    38 schema:sdPublisher N302fd69239264776989c51637764a84d
    39 schema:url http://link.springer.com/10.1007/BF01208956
    40 sgo:license sg:explorer/license/
    41 sgo:sdDataset articles
    42 rdf:type schema:ScholarlyArticle
    43 N04b25457b29d4f6f8201764b25f3a394 schema:name doi
    44 schema:value 10.1007/bf01208956
    45 rdf:type schema:PropertyValue
    46 N302fd69239264776989c51637764a84d schema:name Springer Nature - SN SciGraph project
    47 rdf:type schema:Organization
    48 N49516d37df29465eb314cc3eb2e9f9b4 schema:volumeNumber 109
    49 rdf:type schema:PublicationVolume
    50 N60101c6bd5e84bea9d33a4a8f8cb2835 schema:name dimensions_id
    51 schema:value pub.1028655831
    52 rdf:type schema:PropertyValue
    53 Na54a002b4a2749b9b47ef7d60646fb1b rdf:first sg:person.016240210261.17
    54 rdf:rest rdf:nil
    55 Nd60c29070184458b907e0fa5d4c5bb99 schema:name readcube_id
    56 schema:value 8881c903c3194c3ce2fe70a084495043af22fb90113a0cb7b685dc9b90b9c433
    57 rdf:type schema:PropertyValue
    58 Ndb2f50d0d80b4f64989179822f0172e5 schema:issueNumber 4
    59 rdf:type schema:PublicationIssue
    60 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    61 schema:name Mathematical Sciences
    62 rdf:type schema:DefinedTerm
    63 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    64 schema:name Pure Mathematics
    65 rdf:type schema:DefinedTerm
    66 sg:journal.1136216 schema:issn 0010-3616
    67 1432-0916
    68 schema:name Communications in Mathematical Physics
    69 rdf:type schema:Periodical
    70 sg:person.016240210261.17 schema:affiliation https://www.grid.ac/institutes/grid.16750.35
    71 schema:familyName Witten
    72 schema:givenName Edward
    73 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016240210261.17
    74 rdf:type schema:Person
    75 sg:pub.10.1007/978-1-4684-9162-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024495704
    76 https://doi.org/10.1007/978-1-4684-9162-3
    77 rdf:type schema:CreativeWork
    78 sg:pub.10.1007/978-3-642-49197-9_3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001343616
    79 https://doi.org/10.1007/978-3-642-49197-9_3
    80 rdf:type schema:CreativeWork
    81 sg:pub.10.1007/bf01213595 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041442021
    82 https://doi.org/10.1007/bf01213595
    83 rdf:type schema:CreativeWork
    84 sg:pub.10.1007/bf01215276 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015705784
    85 https://doi.org/10.1007/bf01215276
    86 rdf:type schema:CreativeWork
    87 sg:pub.10.1007/bfb0078047 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027837710
    88 https://doi.org/10.1007/bfb0078047
    89 rdf:type schema:CreativeWork
    90 https://app.dimensions.ai/details/publication/pub.1024495704 schema:CreativeWork
    91 https://doi.org/10.1016/0040-9383(87)90055-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006466102
    92 rdf:type schema:CreativeWork
    93 https://doi.org/10.1016/0370-2693(85)90710-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027481066
    94 rdf:type schema:CreativeWork
    95 https://doi.org/10.1016/0370-2693(86)90760-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030606005
    96 rdf:type schema:CreativeWork
    97 https://doi.org/10.1016/0550-3213(85)90593-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051487480
    98 rdf:type schema:CreativeWork
    99 https://doi.org/10.1090/conm/181/02040 schema:sameAs https://app.dimensions.ai/details/publication/pub.1089203058
    100 rdf:type schema:CreativeWork
    101 https://doi.org/10.1090/s0002-9947-1987-0882700-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025559052
    102 rdf:type schema:CreativeWork
    103 https://doi.org/10.2307/1970715 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069676030
    104 rdf:type schema:CreativeWork
    105 https://doi.org/10.2307/1970716 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069676031
    106 rdf:type schema:CreativeWork
    107 https://doi.org/10.2307/1970756 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069676069
    108 rdf:type schema:CreativeWork
    109 https://doi.org/10.4310/jdg/1214437492 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084459436
    110 rdf:type schema:CreativeWork
    111 https://www.grid.ac/institutes/grid.16750.35 schema:alternateName Princeton University
    112 schema:name Joseph Henry Laboratories, Princeton University, 08544, Princeton, NJ, USA
    113 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...