Thermodynamics of black holes in anti-de Sitter space View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1983-12

AUTHORS

S. W. Hawking, Don N. Page

ABSTRACT

The Einstein equations with a negative cosmological constant admit black hole solutions which are asymptotic to anti-de Sitter space. Like black holes in asymptotically flat space, these solutions have thermodynamic properties including a characteristic temperature and an intrinsic entropy equal to one quarter of the area of the event horizon in Planck units. There are however some important differences from the asymptotically flat case. A black hole in anti-de Sitter space has a minimum temperature which occurs when its size is of the order of the characteristic radius of the anti-de Sitter space. For larger black holes the red-shifted temperature measured at infinity is greater. This means that such black holes have positive specific heat and can be in stable equilibrium with thermal radiation at a fixed temperature. It also implies that the canonical ensemble exists for asymptotically anti-de Sitter space, unlike the case for asymptotically flat space. One can also consider the microcanonical ensemble. One can avoid the problem that arises in asymptotically flat space of having to put the system in a box with unphysical perfectly reflecting walls because the gravitational potential of anti-de Sitter space acts as a box of finite volume. More... »

PAGES

577-588

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf01208266

DOI

http://dx.doi.org/10.1007/bf01208266

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1003905617


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0201", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Astronomical and Space Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Cambridge", 
          "id": "https://www.grid.ac/institutes/grid.5335.0", 
          "name": [
            "Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Silver Street, Cambridge, England"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hawking", 
        "givenName": "S. W.", 
        "id": "sg:person.012212614165.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012212614165.22"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Pennsylvania State University", 
          "id": "https://www.grid.ac/institutes/grid.29857.31", 
          "name": [
            "Department of Physics, The Pennsylvania State University, 16802, University Park, PA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Page", 
        "givenName": "Don N.", 
        "id": "sg:person.016316764733.87", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016316764733.87"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf01208277", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002184326", 
          "https://doi.org/10.1007/bf01208277"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01208277", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002184326", 
          "https://doi.org/10.1007/bf01208277"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1098/rspa.1978.0022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009236192"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02345020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010701796", 
          "https://doi.org/10.1007/bf02345020"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02345020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010701796", 
          "https://doi.org/10.1007/bf02345020"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01213209", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019491790", 
          "https://doi.org/10.1007/bf01213209"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01213209", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019491790", 
          "https://doi.org/10.1007/bf01213209"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0550-3213(78)90434-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027504001"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0550-3213(78)90434-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027504001"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0550-3213(78)90161-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027753176"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0550-3213(78)90161-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027753176"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00759861", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037301010", 
          "https://doi.org/10.1007/bf00759861"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00759861", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037301010", 
          "https://doi.org/10.1007/bf00759861"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01645742", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038501185", 
          "https://doi.org/10.1007/bf01645742"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01645742", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038501185", 
          "https://doi.org/10.1007/bf01645742"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0550-3213(82)90049-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049873046"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0550-3213(82)90049-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049873046"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4613-2955-8_4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053726384", 
          "https://doi.org/10.1007/978-1-4613-2955-8_4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.3037360", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057897322"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.13.191", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060683830"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.13.191", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060683830"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.13.2188", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060683864"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.13.2188", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060683864"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.15.2738", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060684799"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.15.2738", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060684799"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.15.2752", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060684800"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.15.2752", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060684800"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.18.2733", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060686108"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.18.2733", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060686108"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.18.3565", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060686220"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.18.3565", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060686220"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.25.330", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060689662"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.25.330", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060689662"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.7.2333", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060705757"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.7.2333", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060705757"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.25.1596", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060773838"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.25.1596", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060773838"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.26.1344", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060774355"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.26.1344", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060774355"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/cbo9780511524646", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098707667"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1983-12", 
    "datePublishedReg": "1983-12-01", 
    "description": "The Einstein equations with a negative cosmological constant admit black hole solutions which are asymptotic to anti-de Sitter space. Like black holes in asymptotically flat space, these solutions have thermodynamic properties including a characteristic temperature and an intrinsic entropy equal to one quarter of the area of the event horizon in Planck units. There are however some important differences from the asymptotically flat case. A black hole in anti-de Sitter space has a minimum temperature which occurs when its size is of the order of the characteristic radius of the anti-de Sitter space. For larger black holes the red-shifted temperature measured at infinity is greater. This means that such black holes have positive specific heat and can be in stable equilibrium with thermal radiation at a fixed temperature. It also implies that the canonical ensemble exists for asymptotically anti-de Sitter space, unlike the case for asymptotically flat space. One can also consider the microcanonical ensemble. One can avoid the problem that arises in asymptotically flat space of having to put the system in a box with unphysical perfectly reflecting walls because the gravitational potential of anti-de Sitter space acts as a box of finite volume.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf01208266", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136216", 
        "issn": [
          "0010-3616", 
          "1432-0916"
        ], 
        "name": "Communications in Mathematical Physics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "87"
      }
    ], 
    "name": "Thermodynamics of black holes in anti-de Sitter space", 
    "pagination": "577-588", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "129b778ce4c9fe0435c40b0b823d6602ad9818f30766b2e8f29f2276ba0a91c0"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf01208266"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1003905617"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf01208266", 
      "https://app.dimensions.ai/details/publication/pub.1003905617"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:28", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000370_0000000370/records_46744_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/BF01208266"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01208266'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01208266'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01208266'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01208266'


 

This table displays all metadata directly associated to this object as RDF triples.

143 TRIPLES      21 PREDICATES      49 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf01208266 schema:about anzsrc-for:02
2 anzsrc-for:0201
3 schema:author N8197dc8d13a145fc92fbaeb037584d5e
4 schema:citation sg:pub.10.1007/978-1-4613-2955-8_4
5 sg:pub.10.1007/bf00759861
6 sg:pub.10.1007/bf01208277
7 sg:pub.10.1007/bf01213209
8 sg:pub.10.1007/bf01645742
9 sg:pub.10.1007/bf02345020
10 https://doi.org/10.1016/0550-3213(78)90161-x
11 https://doi.org/10.1016/0550-3213(78)90434-0
12 https://doi.org/10.1016/0550-3213(82)90049-9
13 https://doi.org/10.1017/cbo9780511524646
14 https://doi.org/10.1063/1.3037360
15 https://doi.org/10.1098/rspa.1978.0022
16 https://doi.org/10.1103/physrevd.13.191
17 https://doi.org/10.1103/physrevd.13.2188
18 https://doi.org/10.1103/physrevd.15.2738
19 https://doi.org/10.1103/physrevd.15.2752
20 https://doi.org/10.1103/physrevd.18.2733
21 https://doi.org/10.1103/physrevd.18.3565
22 https://doi.org/10.1103/physrevd.25.330
23 https://doi.org/10.1103/physrevd.7.2333
24 https://doi.org/10.1103/physrevlett.25.1596
25 https://doi.org/10.1103/physrevlett.26.1344
26 schema:datePublished 1983-12
27 schema:datePublishedReg 1983-12-01
28 schema:description The Einstein equations with a negative cosmological constant admit black hole solutions which are asymptotic to anti-de Sitter space. Like black holes in asymptotically flat space, these solutions have thermodynamic properties including a characteristic temperature and an intrinsic entropy equal to one quarter of the area of the event horizon in Planck units. There are however some important differences from the asymptotically flat case. A black hole in anti-de Sitter space has a minimum temperature which occurs when its size is of the order of the characteristic radius of the anti-de Sitter space. For larger black holes the red-shifted temperature measured at infinity is greater. This means that such black holes have positive specific heat and can be in stable equilibrium with thermal radiation at a fixed temperature. It also implies that the canonical ensemble exists for asymptotically anti-de Sitter space, unlike the case for asymptotically flat space. One can also consider the microcanonical ensemble. One can avoid the problem that arises in asymptotically flat space of having to put the system in a box with unphysical perfectly reflecting walls because the gravitational potential of anti-de Sitter space acts as a box of finite volume.
29 schema:genre research_article
30 schema:inLanguage en
31 schema:isAccessibleForFree false
32 schema:isPartOf N217287501ded4a58b1b54f6973b4ee02
33 N7976e3b612034d6e96b22831314e1128
34 sg:journal.1136216
35 schema:name Thermodynamics of black holes in anti-de Sitter space
36 schema:pagination 577-588
37 schema:productId N41d92d3d647046229288bacbcdbeabf7
38 N57875244b6114a939ed0d563cf06c097
39 Nbf9e04733cc0426abfb1efe571b96742
40 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003905617
41 https://doi.org/10.1007/bf01208266
42 schema:sdDatePublished 2019-04-11T13:28
43 schema:sdLicense https://scigraph.springernature.com/explorer/license/
44 schema:sdPublisher N574e8e228eaf440d808879bfa4d6ba94
45 schema:url http://link.springer.com/10.1007/BF01208266
46 sgo:license sg:explorer/license/
47 sgo:sdDataset articles
48 rdf:type schema:ScholarlyArticle
49 N217287501ded4a58b1b54f6973b4ee02 schema:volumeNumber 87
50 rdf:type schema:PublicationVolume
51 N41d92d3d647046229288bacbcdbeabf7 schema:name dimensions_id
52 schema:value pub.1003905617
53 rdf:type schema:PropertyValue
54 N4972303d90a9404087a65e2b5b83edac rdf:first sg:person.016316764733.87
55 rdf:rest rdf:nil
56 N574e8e228eaf440d808879bfa4d6ba94 schema:name Springer Nature - SN SciGraph project
57 rdf:type schema:Organization
58 N57875244b6114a939ed0d563cf06c097 schema:name doi
59 schema:value 10.1007/bf01208266
60 rdf:type schema:PropertyValue
61 N7976e3b612034d6e96b22831314e1128 schema:issueNumber 4
62 rdf:type schema:PublicationIssue
63 N8197dc8d13a145fc92fbaeb037584d5e rdf:first sg:person.012212614165.22
64 rdf:rest N4972303d90a9404087a65e2b5b83edac
65 Nbf9e04733cc0426abfb1efe571b96742 schema:name readcube_id
66 schema:value 129b778ce4c9fe0435c40b0b823d6602ad9818f30766b2e8f29f2276ba0a91c0
67 rdf:type schema:PropertyValue
68 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
69 schema:name Physical Sciences
70 rdf:type schema:DefinedTerm
71 anzsrc-for:0201 schema:inDefinedTermSet anzsrc-for:
72 schema:name Astronomical and Space Sciences
73 rdf:type schema:DefinedTerm
74 sg:journal.1136216 schema:issn 0010-3616
75 1432-0916
76 schema:name Communications in Mathematical Physics
77 rdf:type schema:Periodical
78 sg:person.012212614165.22 schema:affiliation https://www.grid.ac/institutes/grid.5335.0
79 schema:familyName Hawking
80 schema:givenName S. W.
81 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012212614165.22
82 rdf:type schema:Person
83 sg:person.016316764733.87 schema:affiliation https://www.grid.ac/institutes/grid.29857.31
84 schema:familyName Page
85 schema:givenName Don N.
86 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016316764733.87
87 rdf:type schema:Person
88 sg:pub.10.1007/978-1-4613-2955-8_4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053726384
89 https://doi.org/10.1007/978-1-4613-2955-8_4
90 rdf:type schema:CreativeWork
91 sg:pub.10.1007/bf00759861 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037301010
92 https://doi.org/10.1007/bf00759861
93 rdf:type schema:CreativeWork
94 sg:pub.10.1007/bf01208277 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002184326
95 https://doi.org/10.1007/bf01208277
96 rdf:type schema:CreativeWork
97 sg:pub.10.1007/bf01213209 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019491790
98 https://doi.org/10.1007/bf01213209
99 rdf:type schema:CreativeWork
100 sg:pub.10.1007/bf01645742 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038501185
101 https://doi.org/10.1007/bf01645742
102 rdf:type schema:CreativeWork
103 sg:pub.10.1007/bf02345020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010701796
104 https://doi.org/10.1007/bf02345020
105 rdf:type schema:CreativeWork
106 https://doi.org/10.1016/0550-3213(78)90161-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1027753176
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1016/0550-3213(78)90434-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027504001
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1016/0550-3213(82)90049-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049873046
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1017/cbo9780511524646 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098707667
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1063/1.3037360 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057897322
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1098/rspa.1978.0022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009236192
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1103/physrevd.13.191 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060683830
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1103/physrevd.13.2188 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060683864
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1103/physrevd.15.2738 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060684799
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1103/physrevd.15.2752 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060684800
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1103/physrevd.18.2733 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060686108
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1103/physrevd.18.3565 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060686220
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1103/physrevd.25.330 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060689662
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1103/physrevd.7.2333 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060705757
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1103/physrevlett.25.1596 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060773838
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1103/physrevlett.26.1344 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060774355
137 rdf:type schema:CreativeWork
138 https://www.grid.ac/institutes/grid.29857.31 schema:alternateName Pennsylvania State University
139 schema:name Department of Physics, The Pennsylvania State University, 16802, University Park, PA, USA
140 rdf:type schema:Organization
141 https://www.grid.ac/institutes/grid.5335.0 schema:alternateName University of Cambridge
142 schema:name Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Silver Street, Cambridge, England
143 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...