Asymptotic completeness for a new class of Stark effect Hamiltonians View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

1986-03

AUTHORS

Arne Jensen

ABSTRACT

Existence and completeness of the wave operators is shown for the Stark effect Hamiltonian in one dimension with a potentialV =W″, whereW is a bounded function with four bounded derivatives. This class of potentials include some almost periodic functions and periodic functions with average zero over a period (Stark-Wannier Hamiltonians). In the last section we discuss classical particle scattering for the same class of potentials. More... »

PAGES

21-28

References to SciGraph publications

  • 1985-06. Existence of Stark ladder resonances in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 1977-10. Spectral and scattering theory of Schrödinger operators related to the stark effect in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 1979-02. Link between the geometrical and the spectral transformation approaches in scattering theory in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 1977-02. Unitary equivalence of stark Hamiltonians in MATHEMATISCHE ZEITSCHRIFT
  • 1983-09. Schrödinger operators with an electric field and random or deterministic potentials in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 1981-01. Absence of singular continuous spectrum for certain self-adjoint operators in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/bf01206951

    DOI

    http://dx.doi.org/10.1007/bf01206951

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1045162135


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0105", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Physics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0206", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Quantum Physics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Matematisk Institut, Aarhus Universitet, DK-8000, Aarhus C, Denmark", 
              "id": "http://www.grid.ac/institutes/grid.7048.b", 
              "name": [
                "Department of Mathematics, University of Kentucky, 40506-0027, Lexington, KY, USA", 
                "Matematisk Institut, Aarhus Universitet, DK-8000, Aarhus C, Denmark"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Jensen", 
            "givenName": "Arne", 
            "id": "sg:person.015240561701.11", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015240561701.11"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf01322607", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032043965", 
              "https://doi.org/10.1007/bf01322607"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01562544", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008716980", 
              "https://doi.org/10.1007/bf01562544"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01213215", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050530057", 
              "https://doi.org/10.1007/bf01213215"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01212445", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018008153", 
              "https://doi.org/10.1007/bf01212445"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01942331", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024542328", 
              "https://doi.org/10.1007/bf01942331"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01609485", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040883192", 
              "https://doi.org/10.1007/bf01609485"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1986-03", 
        "datePublishedReg": "1986-03-01", 
        "description": "Existence and completeness of the wave operators is shown for the Stark effect Hamiltonian in one dimension with a potentialV =W\u2033, whereW is a bounded function with four bounded derivatives. This class of potentials include some almost periodic functions and periodic functions with average zero over a period (Stark-Wannier Hamiltonians). In the last section we discuss classical particle scattering for the same class of potentials.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/bf01206951", 
        "inLanguage": "en", 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1136216", 
            "issn": [
              "0010-3616", 
              "1432-0916"
            ], 
            "name": "Communications in Mathematical Physics", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "107"
          }
        ], 
        "keywords": [
          "classical particles", 
          "asymptotic completeness", 
          "Hamiltonian", 
          "class of potentials", 
          "wave operators", 
          "periodic functions", 
          "new class", 
          "function", 
          "particles", 
          "period", 
          "whereW", 
          "potential", 
          "completeness", 
          "sections", 
          "existence", 
          "last section", 
          "potentialV", 
          "class", 
          "same class", 
          "dimensions", 
          "derivatives", 
          "operators", 
          "Stark effect Hamiltonians", 
          "effect Hamiltonian"
        ], 
        "name": "Asymptotic completeness for a new class of Stark effect Hamiltonians", 
        "pagination": "21-28", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1045162135"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/bf01206951"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/bf01206951", 
          "https://app.dimensions.ai/details/publication/pub.1045162135"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-01-01T18:05", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_214.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/bf01206951"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01206951'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01206951'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01206951'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01206951'


     

    This table displays all metadata directly associated to this object as RDF triples.

    119 TRIPLES      22 PREDICATES      59 URIs      42 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/bf01206951 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 anzsrc-for:0105
    4 anzsrc-for:02
    5 anzsrc-for:0206
    6 schema:author Na0a8eccbc85c48e99b5e92b6c77b4ca3
    7 schema:citation sg:pub.10.1007/bf01212445
    8 sg:pub.10.1007/bf01213215
    9 sg:pub.10.1007/bf01322607
    10 sg:pub.10.1007/bf01562544
    11 sg:pub.10.1007/bf01609485
    12 sg:pub.10.1007/bf01942331
    13 schema:datePublished 1986-03
    14 schema:datePublishedReg 1986-03-01
    15 schema:description Existence and completeness of the wave operators is shown for the Stark effect Hamiltonian in one dimension with a potentialV =W″, whereW is a bounded function with four bounded derivatives. This class of potentials include some almost periodic functions and periodic functions with average zero over a period (Stark-Wannier Hamiltonians). In the last section we discuss classical particle scattering for the same class of potentials.
    16 schema:genre article
    17 schema:inLanguage en
    18 schema:isAccessibleForFree true
    19 schema:isPartOf N1ca928d28afa4d6a860ed60f65a8f164
    20 Nb22272f0590f4f31b8148e5d53ae576d
    21 sg:journal.1136216
    22 schema:keywords Hamiltonian
    23 Stark effect Hamiltonians
    24 asymptotic completeness
    25 class
    26 class of potentials
    27 classical particles
    28 completeness
    29 derivatives
    30 dimensions
    31 effect Hamiltonian
    32 existence
    33 function
    34 last section
    35 new class
    36 operators
    37 particles
    38 period
    39 periodic functions
    40 potential
    41 potentialV
    42 same class
    43 sections
    44 wave operators
    45 whereW
    46 schema:name Asymptotic completeness for a new class of Stark effect Hamiltonians
    47 schema:pagination 21-28
    48 schema:productId N4f2f7af063204cb695e1cb4b28fd21da
    49 Nd26b9c9d2dfc4ab78965d23daf298e5b
    50 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045162135
    51 https://doi.org/10.1007/bf01206951
    52 schema:sdDatePublished 2022-01-01T18:05
    53 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    54 schema:sdPublisher N8649fadcbd6044daa30f6dcacd4816f2
    55 schema:url https://doi.org/10.1007/bf01206951
    56 sgo:license sg:explorer/license/
    57 sgo:sdDataset articles
    58 rdf:type schema:ScholarlyArticle
    59 N1ca928d28afa4d6a860ed60f65a8f164 schema:issueNumber 1
    60 rdf:type schema:PublicationIssue
    61 N4f2f7af063204cb695e1cb4b28fd21da schema:name doi
    62 schema:value 10.1007/bf01206951
    63 rdf:type schema:PropertyValue
    64 N8649fadcbd6044daa30f6dcacd4816f2 schema:name Springer Nature - SN SciGraph project
    65 rdf:type schema:Organization
    66 Na0a8eccbc85c48e99b5e92b6c77b4ca3 rdf:first sg:person.015240561701.11
    67 rdf:rest rdf:nil
    68 Nb22272f0590f4f31b8148e5d53ae576d schema:volumeNumber 107
    69 rdf:type schema:PublicationVolume
    70 Nd26b9c9d2dfc4ab78965d23daf298e5b schema:name dimensions_id
    71 schema:value pub.1045162135
    72 rdf:type schema:PropertyValue
    73 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    74 schema:name Mathematical Sciences
    75 rdf:type schema:DefinedTerm
    76 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    77 schema:name Pure Mathematics
    78 rdf:type schema:DefinedTerm
    79 anzsrc-for:0105 schema:inDefinedTermSet anzsrc-for:
    80 schema:name Mathematical Physics
    81 rdf:type schema:DefinedTerm
    82 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
    83 schema:name Physical Sciences
    84 rdf:type schema:DefinedTerm
    85 anzsrc-for:0206 schema:inDefinedTermSet anzsrc-for:
    86 schema:name Quantum Physics
    87 rdf:type schema:DefinedTerm
    88 sg:journal.1136216 schema:issn 0010-3616
    89 1432-0916
    90 schema:name Communications in Mathematical Physics
    91 schema:publisher Springer Nature
    92 rdf:type schema:Periodical
    93 sg:person.015240561701.11 schema:affiliation grid-institutes:grid.7048.b
    94 schema:familyName Jensen
    95 schema:givenName Arne
    96 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015240561701.11
    97 rdf:type schema:Person
    98 sg:pub.10.1007/bf01212445 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018008153
    99 https://doi.org/10.1007/bf01212445
    100 rdf:type schema:CreativeWork
    101 sg:pub.10.1007/bf01213215 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050530057
    102 https://doi.org/10.1007/bf01213215
    103 rdf:type schema:CreativeWork
    104 sg:pub.10.1007/bf01322607 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032043965
    105 https://doi.org/10.1007/bf01322607
    106 rdf:type schema:CreativeWork
    107 sg:pub.10.1007/bf01562544 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008716980
    108 https://doi.org/10.1007/bf01562544
    109 rdf:type schema:CreativeWork
    110 sg:pub.10.1007/bf01609485 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040883192
    111 https://doi.org/10.1007/bf01609485
    112 rdf:type schema:CreativeWork
    113 sg:pub.10.1007/bf01942331 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024542328
    114 https://doi.org/10.1007/bf01942331
    115 rdf:type schema:CreativeWork
    116 grid-institutes:grid.7048.b schema:alternateName Matematisk Institut, Aarhus Universitet, DK-8000, Aarhus C, Denmark
    117 schema:name Department of Mathematics, University of Kentucky, 40506-0027, Lexington, KY, USA
    118 Matematisk Institut, Aarhus Universitet, DK-8000, Aarhus C, Denmark
    119 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...