The unpredictability of quantum gravity View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

1982-12

AUTHORS

S. W. Hawking

ABSTRACT

Quantum gravity seems to introduce a new level of unpredictability into physics over and above that normally associated with the uncertainty principle. This is because the metric of spacetime can fluctuate from being globally hyperbolic. In other words, the evolution is not completely determined by Cauchy data at past or future infinity. I present a number of axioms that the asymptotic Green functions should obey in any reasonable theory of quantum gravity. These axioms are the same as for ordinary quantum field theory in flat spacetime, except that one axiom, that of asymptotic completeness, is omitted. This allows pure quantum states to decay into mixed states. Calculations with simple models of topologically non-trivial spacetime indicate that such loss of quantum coherence will occur but that the effect will be very small except for fundamental scalar particles, if any such exist. More... »

PAGES

395-415

References to SciGraph publications

  • 1975-08. Particle creation by black holes in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 1982-03. Is quantum gravity deterministic and/or time symmetric? in GENERAL RELATIVITY AND GRAVITATION
  • 1982-09. The scattering of spin-1 particles by quantum gravitational bubbles in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/bf01206031

    DOI

    http://dx.doi.org/10.1007/bf01206031

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1048850063


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0206", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Quantum Physics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "D.A.M.T.P., University of Cambridge, CB3 9EW, Cambridge, England", 
              "id": "http://www.grid.ac/institutes/grid.5335.0", 
              "name": [
                "D.A.M.T.P., University of Cambridge, CB3 9EW, Cambridge, England"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hawking", 
            "givenName": "S. W.", 
            "id": "sg:person.012212614165.22", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012212614165.22"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf01212177", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053240098", 
              "https://doi.org/10.1007/bf01212177"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00756064", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028736321", 
              "https://doi.org/10.1007/bf00756064"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02345020", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010701796", 
              "https://doi.org/10.1007/bf02345020"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1982-12", 
        "datePublishedReg": "1982-12-01", 
        "description": "Quantum gravity seems to introduce a new level of unpredictability into physics over and above that normally associated with the uncertainty principle. This is because the metric of spacetime can fluctuate from being globally hyperbolic. In other words, the evolution is not completely determined by Cauchy data at past or future infinity. I present a number of axioms that the asymptotic Green functions should obey in any reasonable theory of quantum gravity. These axioms are the same as for ordinary quantum field theory in flat spacetime, except that one axiom, that of asymptotic completeness, is omitted. This allows pure quantum states to decay into mixed states. Calculations with simple models of topologically non-trivial spacetime indicate that such loss of quantum coherence will occur but that the effect will be very small except for fundamental scalar particles, if any such exist.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/bf01206031", 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1136216", 
            "issn": [
              "0010-3616", 
              "1432-0916"
            ], 
            "name": "Communications in Mathematical Physics", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "3", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "87"
          }
        ], 
        "keywords": [
          "quantum gravity", 
          "ordinary quantum field theory", 
          "fundamental scalar particles", 
          "pure quantum states", 
          "non-trivial spacetimes", 
          "metric of spacetime", 
          "quantum field theory", 
          "asymptotic Green's functions", 
          "quantum coherence", 
          "quantum states", 
          "scalar particles", 
          "uncertainty principle", 
          "field theory", 
          "Cauchy data", 
          "asymptotic completeness", 
          "mixed state", 
          "flat spacetime", 
          "Green's function", 
          "future infinity", 
          "spacetime", 
          "number of axioms", 
          "reasonable theory", 
          "gravity", 
          "simple model", 
          "physics", 
          "axioms", 
          "theory", 
          "such exists", 
          "new level", 
          "infinity", 
          "coherence", 
          "state", 
          "calculations", 
          "particles", 
          "metrics", 
          "model", 
          "evolution", 
          "unpredictability", 
          "principles", 
          "such losses", 
          "function", 
          "completeness", 
          "number", 
          "exists", 
          "effect", 
          "data", 
          "loss", 
          "levels", 
          "words"
        ], 
        "name": "The unpredictability of quantum gravity", 
        "pagination": "395-415", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1048850063"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/bf01206031"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/bf01206031", 
          "https://app.dimensions.ai/details/publication/pub.1048850063"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-12-01T06:18", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_152.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/bf01206031"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01206031'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01206031'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01206031'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01206031'


     

    This table displays all metadata directly associated to this object as RDF triples.

    118 TRIPLES      21 PREDICATES      77 URIs      66 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/bf01206031 schema:about anzsrc-for:02
    2 anzsrc-for:0206
    3 schema:author N6857a229f1df432bafe5824a304ed702
    4 schema:citation sg:pub.10.1007/bf00756064
    5 sg:pub.10.1007/bf01212177
    6 sg:pub.10.1007/bf02345020
    7 schema:datePublished 1982-12
    8 schema:datePublishedReg 1982-12-01
    9 schema:description Quantum gravity seems to introduce a new level of unpredictability into physics over and above that normally associated with the uncertainty principle. This is because the metric of spacetime can fluctuate from being globally hyperbolic. In other words, the evolution is not completely determined by Cauchy data at past or future infinity. I present a number of axioms that the asymptotic Green functions should obey in any reasonable theory of quantum gravity. These axioms are the same as for ordinary quantum field theory in flat spacetime, except that one axiom, that of asymptotic completeness, is omitted. This allows pure quantum states to decay into mixed states. Calculations with simple models of topologically non-trivial spacetime indicate that such loss of quantum coherence will occur but that the effect will be very small except for fundamental scalar particles, if any such exist.
    10 schema:genre article
    11 schema:isAccessibleForFree true
    12 schema:isPartOf N21abfc40534b4770ac711cdf8c2a48d1
    13 Nf83fd7c7414d440faa896a42ef237572
    14 sg:journal.1136216
    15 schema:keywords Cauchy data
    16 Green's function
    17 asymptotic Green's functions
    18 asymptotic completeness
    19 axioms
    20 calculations
    21 coherence
    22 completeness
    23 data
    24 effect
    25 evolution
    26 exists
    27 field theory
    28 flat spacetime
    29 function
    30 fundamental scalar particles
    31 future infinity
    32 gravity
    33 infinity
    34 levels
    35 loss
    36 metric of spacetime
    37 metrics
    38 mixed state
    39 model
    40 new level
    41 non-trivial spacetimes
    42 number
    43 number of axioms
    44 ordinary quantum field theory
    45 particles
    46 physics
    47 principles
    48 pure quantum states
    49 quantum coherence
    50 quantum field theory
    51 quantum gravity
    52 quantum states
    53 reasonable theory
    54 scalar particles
    55 simple model
    56 spacetime
    57 state
    58 such exists
    59 such losses
    60 theory
    61 uncertainty principle
    62 unpredictability
    63 words
    64 schema:name The unpredictability of quantum gravity
    65 schema:pagination 395-415
    66 schema:productId N3428b98786ce4d95aa6d2d0334546edd
    67 N9b1510727483492eb39b423579220480
    68 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048850063
    69 https://doi.org/10.1007/bf01206031
    70 schema:sdDatePublished 2022-12-01T06:18
    71 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    72 schema:sdPublisher Nacbcd99e0abd47979d8a3d60f42a4849
    73 schema:url https://doi.org/10.1007/bf01206031
    74 sgo:license sg:explorer/license/
    75 sgo:sdDataset articles
    76 rdf:type schema:ScholarlyArticle
    77 N21abfc40534b4770ac711cdf8c2a48d1 schema:volumeNumber 87
    78 rdf:type schema:PublicationVolume
    79 N3428b98786ce4d95aa6d2d0334546edd schema:name doi
    80 schema:value 10.1007/bf01206031
    81 rdf:type schema:PropertyValue
    82 N6857a229f1df432bafe5824a304ed702 rdf:first sg:person.012212614165.22
    83 rdf:rest rdf:nil
    84 N9b1510727483492eb39b423579220480 schema:name dimensions_id
    85 schema:value pub.1048850063
    86 rdf:type schema:PropertyValue
    87 Nacbcd99e0abd47979d8a3d60f42a4849 schema:name Springer Nature - SN SciGraph project
    88 rdf:type schema:Organization
    89 Nf83fd7c7414d440faa896a42ef237572 schema:issueNumber 3
    90 rdf:type schema:PublicationIssue
    91 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
    92 schema:name Physical Sciences
    93 rdf:type schema:DefinedTerm
    94 anzsrc-for:0206 schema:inDefinedTermSet anzsrc-for:
    95 schema:name Quantum Physics
    96 rdf:type schema:DefinedTerm
    97 sg:journal.1136216 schema:issn 0010-3616
    98 1432-0916
    99 schema:name Communications in Mathematical Physics
    100 schema:publisher Springer Nature
    101 rdf:type schema:Periodical
    102 sg:person.012212614165.22 schema:affiliation grid-institutes:grid.5335.0
    103 schema:familyName Hawking
    104 schema:givenName S. W.
    105 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012212614165.22
    106 rdf:type schema:Person
    107 sg:pub.10.1007/bf00756064 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028736321
    108 https://doi.org/10.1007/bf00756064
    109 rdf:type schema:CreativeWork
    110 sg:pub.10.1007/bf01212177 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053240098
    111 https://doi.org/10.1007/bf01212177
    112 rdf:type schema:CreativeWork
    113 sg:pub.10.1007/bf02345020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010701796
    114 https://doi.org/10.1007/bf02345020
    115 rdf:type schema:CreativeWork
    116 grid-institutes:grid.5335.0 schema:alternateName D.A.M.T.P., University of Cambridge, CB3 9EW, Cambridge, England
    117 schema:name D.A.M.T.P., University of Cambridge, CB3 9EW, Cambridge, England
    118 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...