Correlation inequalities and a conjecture for permanents View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1993-09

AUTHORS

Yosef Rinott, Michael Saks

ABSTRACT

This paper presents conditions on nonnegative real valued functionsf1,f2,...,fm andg1,g2,...gm implying an inequality of the type\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathop \Pi \limits_{i = 1}^m \int {f_i (x)d\mu } (x) \leqslant \mathop \Pi \limits_{i = 1}^m \int {g_i (x)d\mu } (x).$$ \end{document} This “2m-function” theorem generalizes the “4-function” theorem of [2], which in turn generalizes a “2-function” theorem ([8]) and the celebrated FKG inequality. It also contains (and was partly inspired by) an “m against 2” inequality that was deduced in [5] from a general product theorem. More... »

PAGES

269-277

References to SciGraph publications

  • 1971-06. Correlation inequalities on some partially ordered sets in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 1974-09. Remarks on the FKG inequalities in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 1978. An inequality for the weights of two families of sets, their unions and intersections in PROBABILITY THEORY AND RELATED FIELDS
  • 1979-10. Inequalities for a pair of mapsS×S→S withS a finite set in MATHEMATISCHE ZEITSCHRIFT
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/bf01202353

    DOI

    http://dx.doi.org/10.1007/bf01202353

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1033836121


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Mathematics, UCSD, 92122, La Jolla, CA", 
              "id": "http://www.grid.ac/institutes/grid.266100.3", 
              "name": [
                "Department of Mathematics, UCSD, 92122, La Jolla, CA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Rinott", 
            "givenName": "Yosef", 
            "id": "sg:person.0736362655.54", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0736362655.54"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Computer Science and Engineering, UCSD, 92122, La Jolla, CA", 
              "id": "http://www.grid.ac/institutes/grid.266100.3", 
              "name": [
                "Department of Ma\u00e9matics, Rutgers University, 08903, New Brunswick, NJ", 
                "Department of Computer Science and Engineering, UCSD, 92122, La Jolla, CA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Saks", 
            "givenName": "Michael", 
            "id": "sg:person.011520224512.05", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011520224512.05"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf01645980", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025981856", 
              "https://doi.org/10.1007/bf01645980"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00536201", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020698706", 
              "https://doi.org/10.1007/bf00536201"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01651330", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019334545", 
              "https://doi.org/10.1007/bf01651330"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01437563", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026318627", 
              "https://doi.org/10.1007/bf01437563"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1993-09", 
        "datePublishedReg": "1993-09-01", 
        "description": "This paper presents conditions on nonnegative real valued functionsf1,f2,...,fm andg1,g2,...gm implying an inequality of the type\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}\n$$\\mathop \\Pi \\limits_{i = 1}^m \\int {f_i (x)d\\mu } (x) \\leqslant \\mathop \\Pi \\limits_{i = 1}^m \\int {g_i (x)d\\mu } (x).$$\n\\end{document} This \u201c2m-function\u201d theorem generalizes the \u201c4-function\u201d theorem of [2], which in turn generalizes a \u201c2-function\u201d theorem ([8]) and the celebrated FKG inequality. It also contains (and was partly inspired by) an \u201cm against 2\u201d inequality that was deduced in [5] from a general product theorem.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/bf01202353", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1136493", 
            "issn": [
              "0209-9683", 
              "1439-6912"
            ], 
            "name": "Combinatorica", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "3", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "13"
          }
        ], 
        "keywords": [
          "gm", 
          "conditions", 
          "turn", 
          "FM", 
          "inequality", 
          "Permanent", 
          "paper", 
          "conjecture", 
          "product theorem", 
          "correlation inequalities", 
          "theorem", 
          "FKG inequality"
        ], 
        "name": "Correlation inequalities and a conjecture for permanents", 
        "pagination": "269-277", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1033836121"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/bf01202353"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/bf01202353", 
          "https://app.dimensions.ai/details/publication/pub.1033836121"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-11-24T20:47", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221124/entities/gbq_results/article/article_217.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/bf01202353"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01202353'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01202353'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01202353'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01202353'


     

    This table displays all metadata directly associated to this object as RDF triples.

    95 TRIPLES      21 PREDICATES      41 URIs      29 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/bf01202353 schema:about anzsrc-for:01
    2 anzsrc-for:08
    3 schema:author N0c347843ee354e09b56e57f6fd8eeae9
    4 schema:citation sg:pub.10.1007/bf00536201
    5 sg:pub.10.1007/bf01437563
    6 sg:pub.10.1007/bf01645980
    7 sg:pub.10.1007/bf01651330
    8 schema:datePublished 1993-09
    9 schema:datePublishedReg 1993-09-01
    10 schema:description This paper presents conditions on nonnegative real valued functionsf1,f2,...,fm andg1,g2,...gm implying an inequality of the type\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathop \Pi \limits_{i = 1}^m \int {f_i (x)d\mu } (x) \leqslant \mathop \Pi \limits_{i = 1}^m \int {g_i (x)d\mu } (x).$$ \end{document} This “2m-function” theorem generalizes the “4-function” theorem of [2], which in turn generalizes a “2-function” theorem ([8]) and the celebrated FKG inequality. It also contains (and was partly inspired by) an “m against 2” inequality that was deduced in [5] from a general product theorem.
    11 schema:genre article
    12 schema:isAccessibleForFree false
    13 schema:isPartOf N2fdf16417562420383637ab36d5aa346
    14 Na8fc359908c94c918136f8efe368a2c2
    15 sg:journal.1136493
    16 schema:keywords FKG inequality
    17 FM
    18 Permanent
    19 conditions
    20 conjecture
    21 correlation inequalities
    22 gm
    23 inequality
    24 paper
    25 product theorem
    26 theorem
    27 turn
    28 schema:name Correlation inequalities and a conjecture for permanents
    29 schema:pagination 269-277
    30 schema:productId N204cd8632dbe43d5a7d7df9d92039af0
    31 N7327a26657314e4f93b73b8357b2a1b5
    32 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033836121
    33 https://doi.org/10.1007/bf01202353
    34 schema:sdDatePublished 2022-11-24T20:47
    35 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    36 schema:sdPublisher N0a4c63f7cb824971882eea4ae0af3402
    37 schema:url https://doi.org/10.1007/bf01202353
    38 sgo:license sg:explorer/license/
    39 sgo:sdDataset articles
    40 rdf:type schema:ScholarlyArticle
    41 N00ab925051684eadafd2c51368dc68f4 rdf:first sg:person.011520224512.05
    42 rdf:rest rdf:nil
    43 N0a4c63f7cb824971882eea4ae0af3402 schema:name Springer Nature - SN SciGraph project
    44 rdf:type schema:Organization
    45 N0c347843ee354e09b56e57f6fd8eeae9 rdf:first sg:person.0736362655.54
    46 rdf:rest N00ab925051684eadafd2c51368dc68f4
    47 N204cd8632dbe43d5a7d7df9d92039af0 schema:name dimensions_id
    48 schema:value pub.1033836121
    49 rdf:type schema:PropertyValue
    50 N2fdf16417562420383637ab36d5aa346 schema:volumeNumber 13
    51 rdf:type schema:PublicationVolume
    52 N7327a26657314e4f93b73b8357b2a1b5 schema:name doi
    53 schema:value 10.1007/bf01202353
    54 rdf:type schema:PropertyValue
    55 Na8fc359908c94c918136f8efe368a2c2 schema:issueNumber 3
    56 rdf:type schema:PublicationIssue
    57 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    58 schema:name Mathematical Sciences
    59 rdf:type schema:DefinedTerm
    60 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    61 schema:name Information and Computing Sciences
    62 rdf:type schema:DefinedTerm
    63 sg:journal.1136493 schema:issn 0209-9683
    64 1439-6912
    65 schema:name Combinatorica
    66 schema:publisher Springer Nature
    67 rdf:type schema:Periodical
    68 sg:person.011520224512.05 schema:affiliation grid-institutes:grid.266100.3
    69 schema:familyName Saks
    70 schema:givenName Michael
    71 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011520224512.05
    72 rdf:type schema:Person
    73 sg:person.0736362655.54 schema:affiliation grid-institutes:grid.266100.3
    74 schema:familyName Rinott
    75 schema:givenName Yosef
    76 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0736362655.54
    77 rdf:type schema:Person
    78 sg:pub.10.1007/bf00536201 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020698706
    79 https://doi.org/10.1007/bf00536201
    80 rdf:type schema:CreativeWork
    81 sg:pub.10.1007/bf01437563 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026318627
    82 https://doi.org/10.1007/bf01437563
    83 rdf:type schema:CreativeWork
    84 sg:pub.10.1007/bf01645980 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025981856
    85 https://doi.org/10.1007/bf01645980
    86 rdf:type schema:CreativeWork
    87 sg:pub.10.1007/bf01651330 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019334545
    88 https://doi.org/10.1007/bf01651330
    89 rdf:type schema:CreativeWork
    90 grid-institutes:grid.266100.3 schema:alternateName Department of Computer Science and Engineering, UCSD, 92122, La Jolla, CA
    91 Department of Mathematics, UCSD, 92122, La Jolla, CA
    92 schema:name Department of Computer Science and Engineering, UCSD, 92122, La Jolla, CA
    93 Department of Mathematics, UCSD, 92122, La Jolla, CA
    94 Department of Maématics, Rutgers University, 08903, New Brunswick, NJ
    95 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...