Local theory of solutions for the 0(2k+1) σ-model View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1980-02

AUTHORS

H. J. Borchers, W. D. Garber

ABSTRACT

We develop a theory of solutionsn for the Euclidean nonlinear 0(2k+1)σ-model for arbitraryk and for a regionG⊂ℝ2. We consider a subclass of solutions characterized by a condition which is fulfilled, forG=ℝ2, by thosen that live on the Riemann sphere S2⊃ℝ2. We are able to characterize this class completely in terms ofk meromorphic functions, and we give an explicit inductive procedure which allows us to calculate all 0(2k+1) solutions from the trivial 0(1) solutions. More... »

PAGES

77-102

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf01200112

DOI

http://dx.doi.org/10.1007/bf01200112

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1026324737


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institut f\u00fcr Theoretische Physik, Universit\u00e4t G\u00f6ttingen, D-3400, G\u00f6ttingen, Germany", 
          "id": "http://www.grid.ac/institutes/grid.411984.1", 
          "name": [
            "Institut f\u00fcr Theoretische Physik, Universit\u00e4t G\u00f6ttingen, D-3400, G\u00f6ttingen, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Borchers", 
        "givenName": "H. J.", 
        "id": "sg:person.015512275131.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015512275131.31"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institut f\u00fcr Theoretische Physik, Universit\u00e4t G\u00f6ttingen, D-3400, G\u00f6ttingen, Germany", 
          "id": "http://www.grid.ac/institutes/grid.411984.1", 
          "name": [
            "Institut f\u00fcr Theoretische Physik, Universit\u00e4t G\u00f6ttingen, D-3400, G\u00f6ttingen, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Garber", 
        "givenName": "W. D.", 
        "id": "sg:person.014102177261.12", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014102177261.12"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "1980-02", 
    "datePublishedReg": "1980-02-01", 
    "description": "We develop a theory of solutionsn for the Euclidean nonlinear 0(2k+1)\u03c3-model for arbitraryk and for a regionG\u2282\u211d2. We consider a subclass of solutions characterized by a condition which is fulfilled, forG=\u211d2, by thosen that live on the Riemann sphere S2\u2283\u211d2. We are able to characterize this class completely in terms ofk meromorphic functions, and we give an explicit inductive procedure which allows us to calculate all 0(2k+1) solutions from the trivial 0(1) solutions.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/bf01200112", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136216", 
        "issn": [
          "0010-3616", 
          "1432-0916"
        ], 
        "name": "Communications in Mathematical Physics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "72"
      }
    ], 
    "keywords": [
      "subclass of solutions", 
      "Riemann sphere", 
      "meromorphic functions", 
      "local theory", 
      "inductive procedure", 
      "solution", 
      "theory", 
      "Euclidean", 
      "arbitraryk", 
      "model", 
      "class", 
      "subclasses", 
      "function", 
      "procedure", 
      "sphere", 
      "conditions", 
      "theory of solutionsn", 
      "solutionsn", 
      "thosen", 
      "terms ofk meromorphic functions", 
      "ofk meromorphic functions", 
      "explicit inductive procedure"
    ], 
    "name": "Local theory of solutions for the 0(2k+1) \u03c3-model", 
    "pagination": "77-102", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1026324737"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf01200112"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf01200112", 
      "https://app.dimensions.ai/details/publication/pub.1026324737"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-11-01T17:56", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/article/article_165.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/bf01200112"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01200112'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01200112'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01200112'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01200112'


 

This table displays all metadata directly associated to this object as RDF triples.

87 TRIPLES      21 PREDICATES      48 URIs      40 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf01200112 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N845c29bead7241988d757e25129db362
4 schema:datePublished 1980-02
5 schema:datePublishedReg 1980-02-01
6 schema:description We develop a theory of solutionsn for the Euclidean nonlinear 0(2k+1)σ-model for arbitraryk and for a regionG⊂ℝ2. We consider a subclass of solutions characterized by a condition which is fulfilled, forG=ℝ2, by thosen that live on the Riemann sphere S2⊃ℝ2. We are able to characterize this class completely in terms ofk meromorphic functions, and we give an explicit inductive procedure which allows us to calculate all 0(2k+1) solutions from the trivial 0(1) solutions.
7 schema:genre article
8 schema:inLanguage en
9 schema:isAccessibleForFree false
10 schema:isPartOf N1a03eef0ac35413b98a901d0eba14dcd
11 N3ad895499cdb43c38b8580bd2e0d6664
12 sg:journal.1136216
13 schema:keywords Euclidean
14 Riemann sphere
15 arbitraryk
16 class
17 conditions
18 explicit inductive procedure
19 function
20 inductive procedure
21 local theory
22 meromorphic functions
23 model
24 ofk meromorphic functions
25 procedure
26 solution
27 solutionsn
28 sphere
29 subclass of solutions
30 subclasses
31 terms ofk meromorphic functions
32 theory
33 theory of solutionsn
34 thosen
35 schema:name Local theory of solutions for the 0(2k+1) σ-model
36 schema:pagination 77-102
37 schema:productId N352d2067f1a64848ae53870234131248
38 N989ed2b0b5c34a6ca4eab611eb9455a8
39 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026324737
40 https://doi.org/10.1007/bf01200112
41 schema:sdDatePublished 2021-11-01T17:56
42 schema:sdLicense https://scigraph.springernature.com/explorer/license/
43 schema:sdPublisher Nf4bed84378d04424ab27636f96c2bf6a
44 schema:url https://doi.org/10.1007/bf01200112
45 sgo:license sg:explorer/license/
46 sgo:sdDataset articles
47 rdf:type schema:ScholarlyArticle
48 N1a03eef0ac35413b98a901d0eba14dcd schema:issueNumber 1
49 rdf:type schema:PublicationIssue
50 N352d2067f1a64848ae53870234131248 schema:name doi
51 schema:value 10.1007/bf01200112
52 rdf:type schema:PropertyValue
53 N3ad895499cdb43c38b8580bd2e0d6664 schema:volumeNumber 72
54 rdf:type schema:PublicationVolume
55 N6f85a0594f87483aa4faf00514cc9580 rdf:first sg:person.014102177261.12
56 rdf:rest rdf:nil
57 N845c29bead7241988d757e25129db362 rdf:first sg:person.015512275131.31
58 rdf:rest N6f85a0594f87483aa4faf00514cc9580
59 N989ed2b0b5c34a6ca4eab611eb9455a8 schema:name dimensions_id
60 schema:value pub.1026324737
61 rdf:type schema:PropertyValue
62 Nf4bed84378d04424ab27636f96c2bf6a schema:name Springer Nature - SN SciGraph project
63 rdf:type schema:Organization
64 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
65 schema:name Mathematical Sciences
66 rdf:type schema:DefinedTerm
67 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
68 schema:name Pure Mathematics
69 rdf:type schema:DefinedTerm
70 sg:journal.1136216 schema:issn 0010-3616
71 1432-0916
72 schema:name Communications in Mathematical Physics
73 schema:publisher Springer Nature
74 rdf:type schema:Periodical
75 sg:person.014102177261.12 schema:affiliation grid-institutes:grid.411984.1
76 schema:familyName Garber
77 schema:givenName W. D.
78 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014102177261.12
79 rdf:type schema:Person
80 sg:person.015512275131.31 schema:affiliation grid-institutes:grid.411984.1
81 schema:familyName Borchers
82 schema:givenName H. J.
83 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015512275131.31
84 rdf:type schema:Person
85 grid-institutes:grid.411984.1 schema:alternateName Institut für Theoretische Physik, Universität Göttingen, D-3400, Göttingen, Germany
86 schema:name Institut für Theoretische Physik, Universität Göttingen, D-3400, Göttingen, Germany
87 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...