Stochastic p.d.e.'s arising from the long range contact and long range voter processes View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1995-12

AUTHORS

C. Müller, R. Tribe

ABSTRACT

A long range contact process and a long range voter process are scaled so that the distance between sites decreases and the number of neighbors of each site increases. The approximate densities of occupied sites, under suitable tine scaling, converge to continuous space time densities which solve stochastic p.d.e.'s. For the contact process the limiting equation is the Kolmogorov-Petrovskii-Piscuinov equation driven by branching white noise. For the voter process the limiting equation is the heat equation driven by Fisher-Wright white noise. More... »

PAGES

519-545

References to SciGraph publications

  • 1995-09. Large time behavior of interface solutions to the heat equation with Fisher-Wright white noise in PROBABILITY THEORY AND RELATED FIELDS
  • 1994-06. A phase transition for a stochastic PDE related to the contact process in PROBABILITY THEORY AND RELATED FIELDS
  • 1986. An introduction to stochastic partial differential equations in ÉCOLE D'ÉTÉ DE PROBABILITÉS DE SAINT FLOUR XIV - 1984
  • 1988. Stepping Stone Models in Population Genetics and Population Dynamics in STOCHASTIC PROCESSES IN PHYSICS AND ENGINEERING
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/bf01198848

    DOI

    http://dx.doi.org/10.1007/bf01198848

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1018346716


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0915", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Interdisciplinary Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "University of Rochester", 
              "id": "https://www.grid.ac/institutes/grid.16416.34", 
              "name": [
                "Department of Mathematics, University of Rochester, Rochester, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "M\u00fcller", 
            "givenName": "C.", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "Mathematics Institute, University of Warwick, Warwick, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Tribe", 
            "givenName": "R.", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf01199262", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001965528", 
              "https://doi.org/10.1007/bf01199262"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01199262", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001965528", 
              "https://doi.org/10.1007/bf01199262"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1006/jfan.1995.1038", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003620879"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01192463", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020344089", 
              "https://doi.org/10.1007/bf01192463"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01192463", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020344089", 
              "https://doi.org/10.1007/bf01192463"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bfb0074920", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028464172", 
              "https://doi.org/10.1007/bfb0074920"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-94-009-2893-0_18", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039422156", 
              "https://doi.org/10.1007/978-94-009-2893-0_18"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1214/aop/1176997023", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1064405770"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.4153/cjm-1994-022-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1072267700"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/9780470316658", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1109496263"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1109496263", 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1995-12", 
        "datePublishedReg": "1995-12-01", 
        "description": "A long range contact process and a long range voter process are scaled so that the distance between sites decreases and the number of neighbors of each site increases. The approximate densities of occupied sites, under suitable tine scaling, converge to continuous space time densities which solve stochastic p.d.e.'s. For the contact process the limiting equation is the Kolmogorov-Petrovskii-Piscuinov equation driven by branching white noise. For the voter process the limiting equation is the heat equation driven by Fisher-Wright white noise.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/bf01198848", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1053886", 
            "issn": [
              "0178-8051", 
              "1432-2064"
            ], 
            "name": "Probability Theory and Related Fields", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "4", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "102"
          }
        ], 
        "name": "Stochastic p.d.e.'s arising from the long range contact and long range voter processes", 
        "pagination": "519-545", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "576a063f4f0cc3bc9851fd59503df16c108fbf73b1e4469dab6fd3b53b1ecb24"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/bf01198848"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1018346716"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/bf01198848", 
          "https://app.dimensions.ai/details/publication/pub.1018346716"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T13:28", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000370_0000000370/records_46741_00000000.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007/BF01198848"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01198848'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01198848'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01198848'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01198848'


     

    This table displays all metadata directly associated to this object as RDF triples.

    98 TRIPLES      21 PREDICATES      36 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/bf01198848 schema:about anzsrc-for:09
    2 anzsrc-for:0915
    3 schema:author Naeb3482a25204499ba3727a3563fdc62
    4 schema:citation sg:pub.10.1007/978-94-009-2893-0_18
    5 sg:pub.10.1007/bf01192463
    6 sg:pub.10.1007/bf01199262
    7 sg:pub.10.1007/bfb0074920
    8 https://app.dimensions.ai/details/publication/pub.1109496263
    9 https://doi.org/10.1002/9780470316658
    10 https://doi.org/10.1006/jfan.1995.1038
    11 https://doi.org/10.1214/aop/1176997023
    12 https://doi.org/10.4153/cjm-1994-022-8
    13 schema:datePublished 1995-12
    14 schema:datePublishedReg 1995-12-01
    15 schema:description A long range contact process and a long range voter process are scaled so that the distance between sites decreases and the number of neighbors of each site increases. The approximate densities of occupied sites, under suitable tine scaling, converge to continuous space time densities which solve stochastic p.d.e.'s. For the contact process the limiting equation is the Kolmogorov-Petrovskii-Piscuinov equation driven by branching white noise. For the voter process the limiting equation is the heat equation driven by Fisher-Wright white noise.
    16 schema:genre research_article
    17 schema:inLanguage en
    18 schema:isAccessibleForFree false
    19 schema:isPartOf N2a77c99dcb364686913be2650d9409a2
    20 N3a2ec456ec4641ba9d79332ec5468759
    21 sg:journal.1053886
    22 schema:name Stochastic p.d.e.'s arising from the long range contact and long range voter processes
    23 schema:pagination 519-545
    24 schema:productId N1fbad6e46400487ba391e50e5e61ba26
    25 Nadfde56bec804f629598c8b62ad6e98d
    26 Ne3ec5063b6b34db6a00598e785c9795b
    27 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018346716
    28 https://doi.org/10.1007/bf01198848
    29 schema:sdDatePublished 2019-04-11T13:28
    30 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    31 schema:sdPublisher Nd7fcb0c305a8414eae889e3d78490fde
    32 schema:url http://link.springer.com/10.1007/BF01198848
    33 sgo:license sg:explorer/license/
    34 sgo:sdDataset articles
    35 rdf:type schema:ScholarlyArticle
    36 N1fbad6e46400487ba391e50e5e61ba26 schema:name dimensions_id
    37 schema:value pub.1018346716
    38 rdf:type schema:PropertyValue
    39 N28da3e79d5484e29aea3c8995e3cb30d schema:name Mathematics Institute, University of Warwick, Warwick, USA
    40 rdf:type schema:Organization
    41 N2a77c99dcb364686913be2650d9409a2 schema:issueNumber 4
    42 rdf:type schema:PublicationIssue
    43 N3a2ec456ec4641ba9d79332ec5468759 schema:volumeNumber 102
    44 rdf:type schema:PublicationVolume
    45 N6eb49b6039704f6b854b914c2ea43fe0 schema:affiliation N28da3e79d5484e29aea3c8995e3cb30d
    46 schema:familyName Tribe
    47 schema:givenName R.
    48 rdf:type schema:Person
    49 Nadfde56bec804f629598c8b62ad6e98d schema:name readcube_id
    50 schema:value 576a063f4f0cc3bc9851fd59503df16c108fbf73b1e4469dab6fd3b53b1ecb24
    51 rdf:type schema:PropertyValue
    52 Naeb3482a25204499ba3727a3563fdc62 rdf:first Naf35503a39704567adaaccfd3f4f0c8f
    53 rdf:rest Nfcebba0c29144e4792f6ccc9215b28d2
    54 Naf35503a39704567adaaccfd3f4f0c8f schema:affiliation https://www.grid.ac/institutes/grid.16416.34
    55 schema:familyName Müller
    56 schema:givenName C.
    57 rdf:type schema:Person
    58 Nd7fcb0c305a8414eae889e3d78490fde schema:name Springer Nature - SN SciGraph project
    59 rdf:type schema:Organization
    60 Ne3ec5063b6b34db6a00598e785c9795b schema:name doi
    61 schema:value 10.1007/bf01198848
    62 rdf:type schema:PropertyValue
    63 Nfcebba0c29144e4792f6ccc9215b28d2 rdf:first N6eb49b6039704f6b854b914c2ea43fe0
    64 rdf:rest rdf:nil
    65 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    66 schema:name Engineering
    67 rdf:type schema:DefinedTerm
    68 anzsrc-for:0915 schema:inDefinedTermSet anzsrc-for:
    69 schema:name Interdisciplinary Engineering
    70 rdf:type schema:DefinedTerm
    71 sg:journal.1053886 schema:issn 0178-8051
    72 1432-2064
    73 schema:name Probability Theory and Related Fields
    74 rdf:type schema:Periodical
    75 sg:pub.10.1007/978-94-009-2893-0_18 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039422156
    76 https://doi.org/10.1007/978-94-009-2893-0_18
    77 rdf:type schema:CreativeWork
    78 sg:pub.10.1007/bf01192463 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020344089
    79 https://doi.org/10.1007/bf01192463
    80 rdf:type schema:CreativeWork
    81 sg:pub.10.1007/bf01199262 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001965528
    82 https://doi.org/10.1007/bf01199262
    83 rdf:type schema:CreativeWork
    84 sg:pub.10.1007/bfb0074920 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028464172
    85 https://doi.org/10.1007/bfb0074920
    86 rdf:type schema:CreativeWork
    87 https://app.dimensions.ai/details/publication/pub.1109496263 schema:CreativeWork
    88 https://doi.org/10.1002/9780470316658 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109496263
    89 rdf:type schema:CreativeWork
    90 https://doi.org/10.1006/jfan.1995.1038 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003620879
    91 rdf:type schema:CreativeWork
    92 https://doi.org/10.1214/aop/1176997023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064405770
    93 rdf:type schema:CreativeWork
    94 https://doi.org/10.4153/cjm-1994-022-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072267700
    95 rdf:type schema:CreativeWork
    96 https://www.grid.ac/institutes/grid.16416.34 schema:alternateName University of Rochester
    97 schema:name Department of Mathematics, University of Rochester, Rochester, USA
    98 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...