Stochastic p.d.e.'s arising from the long range contact and long range voter processes View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1995-12

AUTHORS

C. Müller, R. Tribe

ABSTRACT

A long range contact process and a long range voter process are scaled so that the distance between sites decreases and the number of neighbors of each site increases. The approximate densities of occupied sites, under suitable tine scaling, converge to continuous space time densities which solve stochastic p.d.e.'s. For the contact process the limiting equation is the Kolmogorov-Petrovskii-Piscuinov equation driven by branching white noise. For the voter process the limiting equation is the heat equation driven by Fisher-Wright white noise. More... »

PAGES

519-545

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf01198848

DOI

http://dx.doi.org/10.1007/bf01198848

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1018346716


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0915", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Interdisciplinary Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Rochester", 
          "id": "https://www.grid.ac/institutes/grid.16416.34", 
          "name": [
            "Department of Mathematics, University of Rochester, Rochester, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "M\u00fcller", 
        "givenName": "C.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Mathematics Institute, University of Warwick, Warwick, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tribe", 
        "givenName": "R.", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf01199262", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001965528", 
          "https://doi.org/10.1007/bf01199262"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01199262", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001965528", 
          "https://doi.org/10.1007/bf01199262"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jfan.1995.1038", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003620879"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01192463", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020344089", 
          "https://doi.org/10.1007/bf01192463"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01192463", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020344089", 
          "https://doi.org/10.1007/bf01192463"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bfb0074920", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028464172", 
          "https://doi.org/10.1007/bfb0074920"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-94-009-2893-0_18", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039422156", 
          "https://doi.org/10.1007/978-94-009-2893-0_18"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/aop/1176997023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064405770"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4153/cjm-1994-022-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072267700"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/9780470316658", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109496263"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1109496263", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1995-12", 
    "datePublishedReg": "1995-12-01", 
    "description": "A long range contact process and a long range voter process are scaled so that the distance between sites decreases and the number of neighbors of each site increases. The approximate densities of occupied sites, under suitable tine scaling, converge to continuous space time densities which solve stochastic p.d.e.'s. For the contact process the limiting equation is the Kolmogorov-Petrovskii-Piscuinov equation driven by branching white noise. For the voter process the limiting equation is the heat equation driven by Fisher-Wright white noise.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf01198848", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1053886", 
        "issn": [
          "0178-8051", 
          "1432-2064"
        ], 
        "name": "Probability Theory and Related Fields", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "102"
      }
    ], 
    "name": "Stochastic p.d.e.'s arising from the long range contact and long range voter processes", 
    "pagination": "519-545", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "576a063f4f0cc3bc9851fd59503df16c108fbf73b1e4469dab6fd3b53b1ecb24"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf01198848"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1018346716"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf01198848", 
      "https://app.dimensions.ai/details/publication/pub.1018346716"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:28", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000370_0000000370/records_46741_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/BF01198848"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01198848'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01198848'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01198848'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01198848'


 

This table displays all metadata directly associated to this object as RDF triples.

98 TRIPLES      21 PREDICATES      36 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf01198848 schema:about anzsrc-for:09
2 anzsrc-for:0915
3 schema:author N619f70eff3ef4c4cb98ba65017cf8baf
4 schema:citation sg:pub.10.1007/978-94-009-2893-0_18
5 sg:pub.10.1007/bf01192463
6 sg:pub.10.1007/bf01199262
7 sg:pub.10.1007/bfb0074920
8 https://app.dimensions.ai/details/publication/pub.1109496263
9 https://doi.org/10.1002/9780470316658
10 https://doi.org/10.1006/jfan.1995.1038
11 https://doi.org/10.1214/aop/1176997023
12 https://doi.org/10.4153/cjm-1994-022-8
13 schema:datePublished 1995-12
14 schema:datePublishedReg 1995-12-01
15 schema:description A long range contact process and a long range voter process are scaled so that the distance between sites decreases and the number of neighbors of each site increases. The approximate densities of occupied sites, under suitable tine scaling, converge to continuous space time densities which solve stochastic p.d.e.'s. For the contact process the limiting equation is the Kolmogorov-Petrovskii-Piscuinov equation driven by branching white noise. For the voter process the limiting equation is the heat equation driven by Fisher-Wright white noise.
16 schema:genre research_article
17 schema:inLanguage en
18 schema:isAccessibleForFree false
19 schema:isPartOf N2ca9fa0915074b6dabd0be2a564698fe
20 Nfdf83e61334e40b5bfe8cab8b62204b3
21 sg:journal.1053886
22 schema:name Stochastic p.d.e.'s arising from the long range contact and long range voter processes
23 schema:pagination 519-545
24 schema:productId N946202b57a3f4d9580fc488b14595a52
25 N99834544da114535b6e38f924439038b
26 Neb0483ed1d02436397bd3ba77f105d30
27 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018346716
28 https://doi.org/10.1007/bf01198848
29 schema:sdDatePublished 2019-04-11T13:28
30 schema:sdLicense https://scigraph.springernature.com/explorer/license/
31 schema:sdPublisher N39bf9a7acf7249b0bdfacbedab6fb25d
32 schema:url http://link.springer.com/10.1007/BF01198848
33 sgo:license sg:explorer/license/
34 sgo:sdDataset articles
35 rdf:type schema:ScholarlyArticle
36 N04ac9ae857744c6387a6fb2d2e642504 schema:affiliation https://www.grid.ac/institutes/grid.16416.34
37 schema:familyName Müller
38 schema:givenName C.
39 rdf:type schema:Person
40 N2ca9fa0915074b6dabd0be2a564698fe schema:issueNumber 4
41 rdf:type schema:PublicationIssue
42 N2e7bce0514b948338cd040acb3a306be schema:name Mathematics Institute, University of Warwick, Warwick, USA
43 rdf:type schema:Organization
44 N39bf9a7acf7249b0bdfacbedab6fb25d schema:name Springer Nature - SN SciGraph project
45 rdf:type schema:Organization
46 N619f70eff3ef4c4cb98ba65017cf8baf rdf:first N04ac9ae857744c6387a6fb2d2e642504
47 rdf:rest N6cd6fa2019a9478794045d98b15f7816
48 N6cd6fa2019a9478794045d98b15f7816 rdf:first Nf4c6b77c173240bcabb8c3fa83f06c15
49 rdf:rest rdf:nil
50 N946202b57a3f4d9580fc488b14595a52 schema:name readcube_id
51 schema:value 576a063f4f0cc3bc9851fd59503df16c108fbf73b1e4469dab6fd3b53b1ecb24
52 rdf:type schema:PropertyValue
53 N99834544da114535b6e38f924439038b schema:name dimensions_id
54 schema:value pub.1018346716
55 rdf:type schema:PropertyValue
56 Neb0483ed1d02436397bd3ba77f105d30 schema:name doi
57 schema:value 10.1007/bf01198848
58 rdf:type schema:PropertyValue
59 Nf4c6b77c173240bcabb8c3fa83f06c15 schema:affiliation N2e7bce0514b948338cd040acb3a306be
60 schema:familyName Tribe
61 schema:givenName R.
62 rdf:type schema:Person
63 Nfdf83e61334e40b5bfe8cab8b62204b3 schema:volumeNumber 102
64 rdf:type schema:PublicationVolume
65 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
66 schema:name Engineering
67 rdf:type schema:DefinedTerm
68 anzsrc-for:0915 schema:inDefinedTermSet anzsrc-for:
69 schema:name Interdisciplinary Engineering
70 rdf:type schema:DefinedTerm
71 sg:journal.1053886 schema:issn 0178-8051
72 1432-2064
73 schema:name Probability Theory and Related Fields
74 rdf:type schema:Periodical
75 sg:pub.10.1007/978-94-009-2893-0_18 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039422156
76 https://doi.org/10.1007/978-94-009-2893-0_18
77 rdf:type schema:CreativeWork
78 sg:pub.10.1007/bf01192463 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020344089
79 https://doi.org/10.1007/bf01192463
80 rdf:type schema:CreativeWork
81 sg:pub.10.1007/bf01199262 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001965528
82 https://doi.org/10.1007/bf01199262
83 rdf:type schema:CreativeWork
84 sg:pub.10.1007/bfb0074920 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028464172
85 https://doi.org/10.1007/bfb0074920
86 rdf:type schema:CreativeWork
87 https://app.dimensions.ai/details/publication/pub.1109496263 schema:CreativeWork
88 https://doi.org/10.1002/9780470316658 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109496263
89 rdf:type schema:CreativeWork
90 https://doi.org/10.1006/jfan.1995.1038 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003620879
91 rdf:type schema:CreativeWork
92 https://doi.org/10.1214/aop/1176997023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064405770
93 rdf:type schema:CreativeWork
94 https://doi.org/10.4153/cjm-1994-022-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072267700
95 rdf:type schema:CreativeWork
96 https://www.grid.ac/institutes/grid.16416.34 schema:alternateName University of Rochester
97 schema:name Department of Mathematics, University of Rochester, Rochester, USA
98 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...