Noncommutative stochastic processes with independent and stationary increments satisfy quantum stochastic differential equations View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1990-12

AUTHORS

Michael Schürmann

ABSTRACT

The notion of a unitary noncommutative stochastic process with independent and stationary increments is introduced, and it is proved that such a process, under a continuity assumption, can be embedded into the solution of a quantum stochastic differential equation in the sense of Hudson and Parthasarathy [8].

PAGES

473-490

Journal

TITLE

Probability Theory and Related Fields

ISSUE

4

VOLUME

84

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf01198315

DOI

http://dx.doi.org/10.1007/bf01198315

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1011430441


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Heidelberg University", 
          "id": "https://www.grid.ac/institutes/grid.7700.0", 
          "name": [
            "Institut f\u00fcr Angewandte Mathematik, Universit\u00e4t Heidelberg, Im Neuenheimer Feld 294, D-6900, Heidelberg 1, Federal Republic of Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sch\u00fcrmann", 
        "givenName": "Michael", 
        "id": "sg:person.016203736441.06", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016203736441.06"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bfb0071737", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000765262", 
          "https://doi.org/10.1007/bfb0071737"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01258530", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002470453", 
          "https://doi.org/10.1007/bf01258530"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01258530", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002470453", 
          "https://doi.org/10.1007/bf01258530"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bfb0083553", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003324207", 
          "https://doi.org/10.1007/bfb0083553"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bfb0070306", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012635534", 
          "https://doi.org/10.1007/bfb0070306"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bfb0070306", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012635534", 
          "https://doi.org/10.1007/bfb0070306"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-66706-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028853589", 
          "https://doi.org/10.1007/978-3-642-66706-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-66706-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028853589", 
          "https://doi.org/10.1007/978-3-642-66706-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01162868", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037222781", 
          "https://doi.org/10.1007/bf01162868"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bfb0074495", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041177106", 
          "https://doi.org/10.1007/bfb0074495"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0305004100067372", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053911256"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/1969145", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069674539"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2977/prims/1195184017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1070935221"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1990-12", 
    "datePublishedReg": "1990-12-01", 
    "description": "The notion of a unitary noncommutative stochastic process with independent and stationary increments is introduced, and it is proved that such a process, under a continuity assumption, can be embedded into the solution of a quantum stochastic differential equation in the sense of Hudson and Parthasarathy [8].", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf01198315", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1053886", 
        "issn": [
          "0178-8051", 
          "1432-2064"
        ], 
        "name": "Probability Theory and Related Fields", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "84"
      }
    ], 
    "name": "Noncommutative stochastic processes with independent and stationary increments satisfy quantum stochastic differential equations", 
    "pagination": "473-490", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "3675a8bde7d943a4ef49592aa062fad22bc6b65effe140b6dc58908977518e17"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf01198315"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1011430441"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf01198315", 
      "https://app.dimensions.ai/details/publication/pub.1011430441"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:35", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000370_0000000370/records_46777_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/BF01198315"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01198315'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01198315'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01198315'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01198315'


 

This table displays all metadata directly associated to this object as RDF triples.

98 TRIPLES      21 PREDICATES      37 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf01198315 schema:about anzsrc-for:01
2 anzsrc-for:0104
3 schema:author Nb965535de51f46b9a1fb93ef7d00d623
4 schema:citation sg:pub.10.1007/978-3-642-66706-0
5 sg:pub.10.1007/bf01162868
6 sg:pub.10.1007/bf01258530
7 sg:pub.10.1007/bfb0070306
8 sg:pub.10.1007/bfb0071737
9 sg:pub.10.1007/bfb0074495
10 sg:pub.10.1007/bfb0083553
11 https://doi.org/10.1017/s0305004100067372
12 https://doi.org/10.2307/1969145
13 https://doi.org/10.2977/prims/1195184017
14 schema:datePublished 1990-12
15 schema:datePublishedReg 1990-12-01
16 schema:description The notion of a unitary noncommutative stochastic process with independent and stationary increments is introduced, and it is proved that such a process, under a continuity assumption, can be embedded into the solution of a quantum stochastic differential equation in the sense of Hudson and Parthasarathy [8].
17 schema:genre research_article
18 schema:inLanguage en
19 schema:isAccessibleForFree false
20 schema:isPartOf N9230f55b7f68426d89fa920ac9dd671f
21 Nb3100fda646f41518b412ec15f18eac7
22 sg:journal.1053886
23 schema:name Noncommutative stochastic processes with independent and stationary increments satisfy quantum stochastic differential equations
24 schema:pagination 473-490
25 schema:productId N0ec5dfca95554c0f941280c3155c0626
26 Naa1b331e6ac947138cb820fdc407ae36
27 Ne1d6b014df4d45009d20fc1b4443cfbe
28 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011430441
29 https://doi.org/10.1007/bf01198315
30 schema:sdDatePublished 2019-04-11T13:35
31 schema:sdLicense https://scigraph.springernature.com/explorer/license/
32 schema:sdPublisher N4e52e48ecf01454aaf4e2b6c5d09c7e7
33 schema:url http://link.springer.com/10.1007/BF01198315
34 sgo:license sg:explorer/license/
35 sgo:sdDataset articles
36 rdf:type schema:ScholarlyArticle
37 N0ec5dfca95554c0f941280c3155c0626 schema:name doi
38 schema:value 10.1007/bf01198315
39 rdf:type schema:PropertyValue
40 N4e52e48ecf01454aaf4e2b6c5d09c7e7 schema:name Springer Nature - SN SciGraph project
41 rdf:type schema:Organization
42 N9230f55b7f68426d89fa920ac9dd671f schema:issueNumber 4
43 rdf:type schema:PublicationIssue
44 Naa1b331e6ac947138cb820fdc407ae36 schema:name dimensions_id
45 schema:value pub.1011430441
46 rdf:type schema:PropertyValue
47 Nb3100fda646f41518b412ec15f18eac7 schema:volumeNumber 84
48 rdf:type schema:PublicationVolume
49 Nb965535de51f46b9a1fb93ef7d00d623 rdf:first sg:person.016203736441.06
50 rdf:rest rdf:nil
51 Ne1d6b014df4d45009d20fc1b4443cfbe schema:name readcube_id
52 schema:value 3675a8bde7d943a4ef49592aa062fad22bc6b65effe140b6dc58908977518e17
53 rdf:type schema:PropertyValue
54 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
55 schema:name Mathematical Sciences
56 rdf:type schema:DefinedTerm
57 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
58 schema:name Statistics
59 rdf:type schema:DefinedTerm
60 sg:journal.1053886 schema:issn 0178-8051
61 1432-2064
62 schema:name Probability Theory and Related Fields
63 rdf:type schema:Periodical
64 sg:person.016203736441.06 schema:affiliation https://www.grid.ac/institutes/grid.7700.0
65 schema:familyName Schürmann
66 schema:givenName Michael
67 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016203736441.06
68 rdf:type schema:Person
69 sg:pub.10.1007/978-3-642-66706-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028853589
70 https://doi.org/10.1007/978-3-642-66706-0
71 rdf:type schema:CreativeWork
72 sg:pub.10.1007/bf01162868 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037222781
73 https://doi.org/10.1007/bf01162868
74 rdf:type schema:CreativeWork
75 sg:pub.10.1007/bf01258530 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002470453
76 https://doi.org/10.1007/bf01258530
77 rdf:type schema:CreativeWork
78 sg:pub.10.1007/bfb0070306 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012635534
79 https://doi.org/10.1007/bfb0070306
80 rdf:type schema:CreativeWork
81 sg:pub.10.1007/bfb0071737 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000765262
82 https://doi.org/10.1007/bfb0071737
83 rdf:type schema:CreativeWork
84 sg:pub.10.1007/bfb0074495 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041177106
85 https://doi.org/10.1007/bfb0074495
86 rdf:type schema:CreativeWork
87 sg:pub.10.1007/bfb0083553 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003324207
88 https://doi.org/10.1007/bfb0083553
89 rdf:type schema:CreativeWork
90 https://doi.org/10.1017/s0305004100067372 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053911256
91 rdf:type schema:CreativeWork
92 https://doi.org/10.2307/1969145 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069674539
93 rdf:type schema:CreativeWork
94 https://doi.org/10.2977/prims/1195184017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070935221
95 rdf:type schema:CreativeWork
96 https://www.grid.ac/institutes/grid.7700.0 schema:alternateName Heidelberg University
97 schema:name Institut für Angewandte Mathematik, Universität Heidelberg, Im Neuenheimer Feld 294, D-6900, Heidelberg 1, Federal Republic of Germany
98 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...