On dissipative stochastic equations in a Hilbert space View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1996-12

AUTHORS

A. S. Holevo

ABSTRACT

A general existence and uniqueness theorem for solutions of linear dissipative stochastic differential equation in a Hilbert space is proved. The dual equation is introduced and the duality relation is established. Proofs take inspirations from quantum stochastic calculus, however without using it. Solutions of both equations provide classical stochastic representation for a quantum dynamical semigroup, describing quantum Markovian evolution. The problem of the mean-square norm conservation, closely related to the unitality (non-explosion) of the quantum dynamical semigroup, is considered and a hyperdissipativity condition, ensuring such conservation, is discussed. Comments are given on the existence of solutions of a nonlinear stochastic differential equation, introduced and discussed recently in physical literature in connection with continuous quantum measurement processes. More... »

PAGES

483-500

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf01198163

DOI

http://dx.doi.org/10.1007/bf01198163

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1041019695


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Applied Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Steklov Mathematical Institute", 
          "id": "https://www.grid.ac/institutes/grid.426543.2", 
          "name": [
            "Steklov Mathematical Institute, Vavilova 42, 117966, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Holevo", 
        "givenName": "A. S.", 
        "id": "sg:person.012742037634.56", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012742037634.56"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1006/jfan.1995.1089", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001904268"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jfan.1993.1140", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012262773"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0375-9601(88)90309-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012273550"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0375-9601(88)90309-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012273550"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-66282-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016619032", 
          "https://doi.org/10.1007/978-3-642-66282-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-66282-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016619032", 
          "https://doi.org/10.1007/978-3-642-66282-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0375-9601(89)90066-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017087283"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0375-9601(89)90066-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017087283"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0304-4149(95)00011-u", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019574427"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-662-21558-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029411056", 
          "https://doi.org/10.1007/978-3-662-21558-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-662-21558-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029411056", 
          "https://doi.org/10.1007/978-3-662-21558-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0034-4877(77)90059-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038122986"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0034-4877(77)90059-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038122986"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00354039", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043521384", 
          "https://doi.org/10.1007/bf00354039"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-662-09089-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051466457", 
          "https://doi.org/10.1007/978-3-662-09089-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-662-09089-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051466457", 
          "https://doi.org/10.1007/978-3-662-09089-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.529188", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058106203"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/9789812812810_0013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1088700980"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/9789814354783_0013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1088793996"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1996-12", 
    "datePublishedReg": "1996-12-01", 
    "description": "A general existence and uniqueness theorem for solutions of linear dissipative stochastic differential equation in a Hilbert space is proved. The dual equation is introduced and the duality relation is established. Proofs take inspirations from quantum stochastic calculus, however without using it. Solutions of both equations provide classical stochastic representation for a quantum dynamical semigroup, describing quantum Markovian evolution. The problem of the mean-square norm conservation, closely related to the unitality (non-explosion) of the quantum dynamical semigroup, is considered and a hyperdissipativity condition, ensuring such conservation, is discussed. Comments are given on the existence of solutions of a nonlinear stochastic differential equation, introduced and discussed recently in physical literature in connection with continuous quantum measurement processes.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf01198163", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1053886", 
        "issn": [
          "0178-8051", 
          "1432-2064"
        ], 
        "name": "Probability Theory and Related Fields", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "104"
      }
    ], 
    "name": "On dissipative stochastic equations in a Hilbert space", 
    "pagination": "483-500", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "c36797742152d47d6926add45047e1863498d2fe545ca5544e22a06f39cd8851"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf01198163"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1041019695"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf01198163", 
      "https://app.dimensions.ai/details/publication/pub.1041019695"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:27", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000370_0000000370/records_46738_00000002.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/BF01198163"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01198163'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01198163'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01198163'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01198163'


 

This table displays all metadata directly associated to this object as RDF triples.

104 TRIPLES      21 PREDICATES      40 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf01198163 schema:about anzsrc-for:01
2 anzsrc-for:0102
3 schema:author N823d424c392946ad89301eea12506c76
4 schema:citation sg:pub.10.1007/978-3-642-66282-9
5 sg:pub.10.1007/978-3-662-09089-3
6 sg:pub.10.1007/978-3-662-21558-6
7 sg:pub.10.1007/bf00354039
8 https://doi.org/10.1006/jfan.1993.1140
9 https://doi.org/10.1006/jfan.1995.1089
10 https://doi.org/10.1016/0034-4877(77)90059-3
11 https://doi.org/10.1016/0304-4149(95)00011-u
12 https://doi.org/10.1016/0375-9601(88)90309-x
13 https://doi.org/10.1016/0375-9601(89)90066-2
14 https://doi.org/10.1063/1.529188
15 https://doi.org/10.1142/9789812812810_0013
16 https://doi.org/10.1142/9789814354783_0013
17 schema:datePublished 1996-12
18 schema:datePublishedReg 1996-12-01
19 schema:description A general existence and uniqueness theorem for solutions of linear dissipative stochastic differential equation in a Hilbert space is proved. The dual equation is introduced and the duality relation is established. Proofs take inspirations from quantum stochastic calculus, however without using it. Solutions of both equations provide classical stochastic representation for a quantum dynamical semigroup, describing quantum Markovian evolution. The problem of the mean-square norm conservation, closely related to the unitality (non-explosion) of the quantum dynamical semigroup, is considered and a hyperdissipativity condition, ensuring such conservation, is discussed. Comments are given on the existence of solutions of a nonlinear stochastic differential equation, introduced and discussed recently in physical literature in connection with continuous quantum measurement processes.
20 schema:genre research_article
21 schema:inLanguage en
22 schema:isAccessibleForFree false
23 schema:isPartOf N8473a8d53d68481686201b46a5bc2c5c
24 Nc46b180ffa7446f6b42c45d1119f2e0e
25 sg:journal.1053886
26 schema:name On dissipative stochastic equations in a Hilbert space
27 schema:pagination 483-500
28 schema:productId N12065f75ccab40ac93630d878628caaf
29 N4630fca7d76540378ff36260f3b7978b
30 N80798dfb0f66484d92f270319d53c9b3
31 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041019695
32 https://doi.org/10.1007/bf01198163
33 schema:sdDatePublished 2019-04-11T13:27
34 schema:sdLicense https://scigraph.springernature.com/explorer/license/
35 schema:sdPublisher Nffe0d0377bde4962b61dc9c7d45d2503
36 schema:url http://link.springer.com/10.1007/BF01198163
37 sgo:license sg:explorer/license/
38 sgo:sdDataset articles
39 rdf:type schema:ScholarlyArticle
40 N12065f75ccab40ac93630d878628caaf schema:name dimensions_id
41 schema:value pub.1041019695
42 rdf:type schema:PropertyValue
43 N4630fca7d76540378ff36260f3b7978b schema:name readcube_id
44 schema:value c36797742152d47d6926add45047e1863498d2fe545ca5544e22a06f39cd8851
45 rdf:type schema:PropertyValue
46 N80798dfb0f66484d92f270319d53c9b3 schema:name doi
47 schema:value 10.1007/bf01198163
48 rdf:type schema:PropertyValue
49 N823d424c392946ad89301eea12506c76 rdf:first sg:person.012742037634.56
50 rdf:rest rdf:nil
51 N8473a8d53d68481686201b46a5bc2c5c schema:issueNumber 4
52 rdf:type schema:PublicationIssue
53 Nc46b180ffa7446f6b42c45d1119f2e0e schema:volumeNumber 104
54 rdf:type schema:PublicationVolume
55 Nffe0d0377bde4962b61dc9c7d45d2503 schema:name Springer Nature - SN SciGraph project
56 rdf:type schema:Organization
57 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
58 schema:name Mathematical Sciences
59 rdf:type schema:DefinedTerm
60 anzsrc-for:0102 schema:inDefinedTermSet anzsrc-for:
61 schema:name Applied Mathematics
62 rdf:type schema:DefinedTerm
63 sg:journal.1053886 schema:issn 0178-8051
64 1432-2064
65 schema:name Probability Theory and Related Fields
66 rdf:type schema:Periodical
67 sg:person.012742037634.56 schema:affiliation https://www.grid.ac/institutes/grid.426543.2
68 schema:familyName Holevo
69 schema:givenName A. S.
70 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012742037634.56
71 rdf:type schema:Person
72 sg:pub.10.1007/978-3-642-66282-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016619032
73 https://doi.org/10.1007/978-3-642-66282-9
74 rdf:type schema:CreativeWork
75 sg:pub.10.1007/978-3-662-09089-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051466457
76 https://doi.org/10.1007/978-3-662-09089-3
77 rdf:type schema:CreativeWork
78 sg:pub.10.1007/978-3-662-21558-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029411056
79 https://doi.org/10.1007/978-3-662-21558-6
80 rdf:type schema:CreativeWork
81 sg:pub.10.1007/bf00354039 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043521384
82 https://doi.org/10.1007/bf00354039
83 rdf:type schema:CreativeWork
84 https://doi.org/10.1006/jfan.1993.1140 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012262773
85 rdf:type schema:CreativeWork
86 https://doi.org/10.1006/jfan.1995.1089 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001904268
87 rdf:type schema:CreativeWork
88 https://doi.org/10.1016/0034-4877(77)90059-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038122986
89 rdf:type schema:CreativeWork
90 https://doi.org/10.1016/0304-4149(95)00011-u schema:sameAs https://app.dimensions.ai/details/publication/pub.1019574427
91 rdf:type schema:CreativeWork
92 https://doi.org/10.1016/0375-9601(88)90309-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1012273550
93 rdf:type schema:CreativeWork
94 https://doi.org/10.1016/0375-9601(89)90066-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017087283
95 rdf:type schema:CreativeWork
96 https://doi.org/10.1063/1.529188 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058106203
97 rdf:type schema:CreativeWork
98 https://doi.org/10.1142/9789812812810_0013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1088700980
99 rdf:type schema:CreativeWork
100 https://doi.org/10.1142/9789814354783_0013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1088793996
101 rdf:type schema:CreativeWork
102 https://www.grid.ac/institutes/grid.426543.2 schema:alternateName Steklov Mathematical Institute
103 schema:name Steklov Mathematical Institute, Vavilova 42, 117966, Moscow, Russia
104 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...