Classification of Gravitational Instanton symmetries View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

1979-10

AUTHORS

G. W. Gibbons, S. W. Hawking

ABSTRACT

We classify the action of one parameter isometry groups of Gravitational Instantons, complete non singular positive definite solutions of the Einstein equations with or without Λ term. The fixed points of the action are of 2-types, isolated points which we call “nuts” and 2-surfaces which we call “bolts”. We describe all known gravitational instantons and relate the numbers and types of the nuts and bolts occurring in them to their topological invariants. We perform a 3+1 decomposition of the field equations with respect to orbits of the isometry group and exhibit a certain duality between “electric” and “magnetic” aspects of gravity. We also obtain a formula for the gravitational action of the instantons in terms of the areas of the bolts and certain nut charges and potentials that we define. This formula can be interpreted thermodynamically in several ways. More... »

PAGES

291-310

References to SciGraph publications

  • 1975-08. Particle creation by black holes in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 1978-08. ℂP2 as a gravitational Instanton in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 1972-06. Black holes in general relativity in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/bf01197189

    DOI

    http://dx.doi.org/10.1007/bf01197189

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1023506156


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Applied Mathematics and Theoretical Physics, University of Cambridge, CB3 9EW, Cambridge, England", 
              "id": "http://www.grid.ac/institutes/grid.5335.0", 
              "name": [
                "Department of Applied Mathematics and Theoretical Physics, University of Cambridge, CB3 9EW, Cambridge, England"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Gibbons", 
            "givenName": "G. W.", 
            "id": "sg:person.0761046650.29", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0761046650.29"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Applied Mathematics and Theoretical Physics, University of Cambridge, CB3 9EW, Cambridge, England", 
              "id": "http://www.grid.ac/institutes/grid.5335.0", 
              "name": [
                "Department of Applied Mathematics and Theoretical Physics, University of Cambridge, CB3 9EW, Cambridge, England"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hawking", 
            "givenName": "S. W.", 
            "id": "sg:person.012212614165.22", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012212614165.22"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf01940766", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053589312", 
              "https://doi.org/10.1007/bf01940766"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01877517", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042906989", 
              "https://doi.org/10.1007/bf01877517"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02345020", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010701796", 
              "https://doi.org/10.1007/bf02345020"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1979-10", 
        "datePublishedReg": "1979-10-01", 
        "description": "We classify the action of one parameter isometry groups of Gravitational Instantons, complete non singular positive definite solutions of the Einstein equations with or without \u039b term. The fixed points of the action are of 2-types, isolated points which we call \u201cnuts\u201d and 2-surfaces which we call \u201cbolts\u201d. We describe all known gravitational instantons and relate the numbers and types of the nuts and bolts occurring in them to their topological invariants. We perform a 3+1 decomposition of the field equations with respect to orbits of the isometry group and exhibit a certain duality between \u201celectric\u201d and \u201cmagnetic\u201d aspects of gravity. We also obtain a formula for the gravitational action of the instantons in terms of the areas of the bolts and certain nut charges and potentials that we define. This formula can be interpreted thermodynamically in several ways.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/bf01197189", 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1136216", 
            "issn": [
              "0010-3616", 
              "1432-0916"
            ], 
            "name": "Communications in Mathematical Physics", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "3", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "66"
          }
        ], 
        "keywords": [
          "isometry group", 
          "gravitational instantons", 
          "positive definite solution", 
          "aspects of gravity", 
          "field equations", 
          "Einstein equations", 
          "definite solution", 
          "topological invariants", 
          "gravitational action", 
          "NUT charge", 
          "instantons", 
          "certain duality", 
          "equations", 
          "formula", 
          "invariants", 
          "duality", 
          "symmetry", 
          "gravity", 
          "orbit", 
          "terms", 
          "point", 
          "solution", 
          "decomposition", 
          "Electric", 
          "charge", 
          "number", 
          "respect", 
          "way", 
          "types", 
          "classification", 
          "aspects", 
          "potential", 
          "action", 
          "area", 
          "bolts", 
          "group", 
          "nuts"
        ], 
        "name": "Classification of Gravitational Instanton symmetries", 
        "pagination": "291-310", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1023506156"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/bf01197189"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/bf01197189", 
          "https://app.dimensions.ai/details/publication/pub.1023506156"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-12-01T06:17", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_106.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/bf01197189"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01197189'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01197189'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01197189'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01197189'


     

    This table displays all metadata directly associated to this object as RDF triples.

    113 TRIPLES      21 PREDICATES      65 URIs      54 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/bf01197189 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author N24e703de631c4e58b7fa6fcbc442af72
    4 schema:citation sg:pub.10.1007/bf01877517
    5 sg:pub.10.1007/bf01940766
    6 sg:pub.10.1007/bf02345020
    7 schema:datePublished 1979-10
    8 schema:datePublishedReg 1979-10-01
    9 schema:description We classify the action of one parameter isometry groups of Gravitational Instantons, complete non singular positive definite solutions of the Einstein equations with or without Λ term. The fixed points of the action are of 2-types, isolated points which we call “nuts” and 2-surfaces which we call “bolts”. We describe all known gravitational instantons and relate the numbers and types of the nuts and bolts occurring in them to their topological invariants. We perform a 3+1 decomposition of the field equations with respect to orbits of the isometry group and exhibit a certain duality between “electric” and “magnetic” aspects of gravity. We also obtain a formula for the gravitational action of the instantons in terms of the areas of the bolts and certain nut charges and potentials that we define. This formula can be interpreted thermodynamically in several ways.
    10 schema:genre article
    11 schema:isAccessibleForFree true
    12 schema:isPartOf N17a5c7f169474b2680fd93f75bd8a649
    13 Nab04d7d757144ff7a9576418febda321
    14 sg:journal.1136216
    15 schema:keywords Einstein equations
    16 Electric
    17 NUT charge
    18 action
    19 area
    20 aspects
    21 aspects of gravity
    22 bolts
    23 certain duality
    24 charge
    25 classification
    26 decomposition
    27 definite solution
    28 duality
    29 equations
    30 field equations
    31 formula
    32 gravitational action
    33 gravitational instantons
    34 gravity
    35 group
    36 instantons
    37 invariants
    38 isometry group
    39 number
    40 nuts
    41 orbit
    42 point
    43 positive definite solution
    44 potential
    45 respect
    46 solution
    47 symmetry
    48 terms
    49 topological invariants
    50 types
    51 way
    52 schema:name Classification of Gravitational Instanton symmetries
    53 schema:pagination 291-310
    54 schema:productId N3a2cde7a150a4cf3b9317b7667f94d07
    55 N47765029ac0b4dafb3a9455af3d2b66f
    56 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023506156
    57 https://doi.org/10.1007/bf01197189
    58 schema:sdDatePublished 2022-12-01T06:17
    59 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    60 schema:sdPublisher N36e5e7282557462fb8ab7e27ac33a9e2
    61 schema:url https://doi.org/10.1007/bf01197189
    62 sgo:license sg:explorer/license/
    63 sgo:sdDataset articles
    64 rdf:type schema:ScholarlyArticle
    65 N08f46880bf1a41deba7907f9f5b84e6e rdf:first sg:person.012212614165.22
    66 rdf:rest rdf:nil
    67 N17a5c7f169474b2680fd93f75bd8a649 schema:volumeNumber 66
    68 rdf:type schema:PublicationVolume
    69 N24e703de631c4e58b7fa6fcbc442af72 rdf:first sg:person.0761046650.29
    70 rdf:rest N08f46880bf1a41deba7907f9f5b84e6e
    71 N36e5e7282557462fb8ab7e27ac33a9e2 schema:name Springer Nature - SN SciGraph project
    72 rdf:type schema:Organization
    73 N3a2cde7a150a4cf3b9317b7667f94d07 schema:name dimensions_id
    74 schema:value pub.1023506156
    75 rdf:type schema:PropertyValue
    76 N47765029ac0b4dafb3a9455af3d2b66f schema:name doi
    77 schema:value 10.1007/bf01197189
    78 rdf:type schema:PropertyValue
    79 Nab04d7d757144ff7a9576418febda321 schema:issueNumber 3
    80 rdf:type schema:PublicationIssue
    81 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    82 schema:name Mathematical Sciences
    83 rdf:type schema:DefinedTerm
    84 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    85 schema:name Pure Mathematics
    86 rdf:type schema:DefinedTerm
    87 sg:journal.1136216 schema:issn 0010-3616
    88 1432-0916
    89 schema:name Communications in Mathematical Physics
    90 schema:publisher Springer Nature
    91 rdf:type schema:Periodical
    92 sg:person.012212614165.22 schema:affiliation grid-institutes:grid.5335.0
    93 schema:familyName Hawking
    94 schema:givenName S. W.
    95 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012212614165.22
    96 rdf:type schema:Person
    97 sg:person.0761046650.29 schema:affiliation grid-institutes:grid.5335.0
    98 schema:familyName Gibbons
    99 schema:givenName G. W.
    100 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0761046650.29
    101 rdf:type schema:Person
    102 sg:pub.10.1007/bf01877517 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042906989
    103 https://doi.org/10.1007/bf01877517
    104 rdf:type schema:CreativeWork
    105 sg:pub.10.1007/bf01940766 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053589312
    106 https://doi.org/10.1007/bf01940766
    107 rdf:type schema:CreativeWork
    108 sg:pub.10.1007/bf02345020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010701796
    109 https://doi.org/10.1007/bf02345020
    110 rdf:type schema:CreativeWork
    111 grid-institutes:grid.5335.0 schema:alternateName Department of Applied Mathematics and Theoretical Physics, University of Cambridge, CB3 9EW, Cambridge, England
    112 schema:name Department of Applied Mathematics and Theoretical Physics, University of Cambridge, CB3 9EW, Cambridge, England
    113 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...