Backward stochastic differential equations and applications to optimal control View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1993-03

AUTHORS

Shige Peng

ABSTRACT

We study the existence and uniqueness of the following kind of backward stochastic differential equation, under local Lipschitz condition, where (Ω, ℱ,P, W(·), ℱt) is a standard Wiener process, for any given (x, y),f(x, y, ·) is an ℱt-adapted process, andX is ℱt-measurable. The problem is to look for an adapted pair (x(·),y(·)) that solves the above equation. A generalized matrix Riccati equation of that type is also investigated. A new form of stochastic maximum principle is obtained. More... »

PAGES

125-144

References to SciGraph publications

  • 2009-02-24. General necessary conditions for optimal control of stochastic systems in STOCHASTIC SYSTEMS: MODELING, IDENTIFICATION AND OPTIMIZATION, II
  • Journal

    TITLE

    Applied Mathematics & Optimization

    ISSUE

    2

    VOLUME

    27

    Author Affiliations

    Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/bf01195978

    DOI

    http://dx.doi.org/10.1007/bf01195978

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1035616904


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Statistics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Shandong University", 
              "id": "https://www.grid.ac/institutes/grid.27255.37", 
              "name": [
                "Department of Mathematics, Shandong University, 250100, Jinan, Shandong, People's Republic of China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Peng", 
            "givenName": "Shige", 
            "id": "sg:person.012375343637.10", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012375343637.10"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bfb0120743", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014569035", 
              "https://doi.org/10.1007/bfb0120743"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bfb0120743", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014569035", 
              "https://doi.org/10.1007/bfb0120743"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0167-6911(90)90082-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048954288"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0167-6911(90)90082-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048954288"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1137/0306023", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062842810"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1137/0306044", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062842858"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1137/0310041", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062843032"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1137/0314028", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062843265"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1137/0328054", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062844229"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1137/0330018", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062844346"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1137/1020004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062861199"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1993-03", 
        "datePublishedReg": "1993-03-01", 
        "description": "We study the existence and uniqueness of the following kind of backward stochastic differential equation, under local Lipschitz condition, where (\u03a9, \u2131,P, W(\u00b7), \u2131t) is a standard Wiener process, for any given (x, y),f(x, y, \u00b7) is an \u2131t-adapted process, andX is \u2131t-measurable. The problem is to look for an adapted pair (x(\u00b7),y(\u00b7)) that solves the above equation. A generalized matrix Riccati equation of that type is also investigated. A new form of stochastic maximum principle is obtained.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/bf01195978", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1120592", 
            "issn": [
              "0095-4616", 
              "1432-0606"
            ], 
            "name": "Applied Mathematics & Optimization", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "2", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "27"
          }
        ], 
        "name": "Backward stochastic differential equations and applications to optimal control", 
        "pagination": "125-144", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "a9aa929b9c0dbbc2f4e9518b92c1f2d4c2dfed013b3ffd27c38d26f21497d3e7"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/bf01195978"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1035616904"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/bf01195978", 
          "https://app.dimensions.ai/details/publication/pub.1035616904"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T13:30", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000370_0000000370/records_46751_00000001.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007/BF01195978"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01195978'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01195978'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01195978'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01195978'


     

    This table displays all metadata directly associated to this object as RDF triples.

    89 TRIPLES      21 PREDICATES      36 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/bf01195978 schema:about anzsrc-for:01
    2 anzsrc-for:0104
    3 schema:author N3a28bfa03144447f84fc41dc041aedfa
    4 schema:citation sg:pub.10.1007/bfb0120743
    5 https://doi.org/10.1016/0167-6911(90)90082-6
    6 https://doi.org/10.1137/0306023
    7 https://doi.org/10.1137/0306044
    8 https://doi.org/10.1137/0310041
    9 https://doi.org/10.1137/0314028
    10 https://doi.org/10.1137/0328054
    11 https://doi.org/10.1137/0330018
    12 https://doi.org/10.1137/1020004
    13 schema:datePublished 1993-03
    14 schema:datePublishedReg 1993-03-01
    15 schema:description We study the existence and uniqueness of the following kind of backward stochastic differential equation, under local Lipschitz condition, where (Ω, ℱ,P, W(·), ℱt) is a standard Wiener process, for any given (x, y),f(x, y, ·) is an ℱt-adapted process, andX is ℱt-measurable. The problem is to look for an adapted pair (x(·),y(·)) that solves the above equation. A generalized matrix Riccati equation of that type is also investigated. A new form of stochastic maximum principle is obtained.
    16 schema:genre research_article
    17 schema:inLanguage en
    18 schema:isAccessibleForFree false
    19 schema:isPartOf N2aad3aeb1bce42e7864a03a703c91c89
    20 Nc94a430ee17d4270adb86642bea909da
    21 sg:journal.1120592
    22 schema:name Backward stochastic differential equations and applications to optimal control
    23 schema:pagination 125-144
    24 schema:productId N15458a1044dc4f8daed1daf3e557d0d4
    25 N397756f65d454b9b8db7d29dc3411a6b
    26 Nfb9f540321544682b12954c41ebce4e9
    27 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035616904
    28 https://doi.org/10.1007/bf01195978
    29 schema:sdDatePublished 2019-04-11T13:30
    30 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    31 schema:sdPublisher N8fc73851af4242b5b14519eae7ad4f08
    32 schema:url http://link.springer.com/10.1007/BF01195978
    33 sgo:license sg:explorer/license/
    34 sgo:sdDataset articles
    35 rdf:type schema:ScholarlyArticle
    36 N15458a1044dc4f8daed1daf3e557d0d4 schema:name readcube_id
    37 schema:value a9aa929b9c0dbbc2f4e9518b92c1f2d4c2dfed013b3ffd27c38d26f21497d3e7
    38 rdf:type schema:PropertyValue
    39 N2aad3aeb1bce42e7864a03a703c91c89 schema:issueNumber 2
    40 rdf:type schema:PublicationIssue
    41 N397756f65d454b9b8db7d29dc3411a6b schema:name doi
    42 schema:value 10.1007/bf01195978
    43 rdf:type schema:PropertyValue
    44 N3a28bfa03144447f84fc41dc041aedfa rdf:first sg:person.012375343637.10
    45 rdf:rest rdf:nil
    46 N8fc73851af4242b5b14519eae7ad4f08 schema:name Springer Nature - SN SciGraph project
    47 rdf:type schema:Organization
    48 Nc94a430ee17d4270adb86642bea909da schema:volumeNumber 27
    49 rdf:type schema:PublicationVolume
    50 Nfb9f540321544682b12954c41ebce4e9 schema:name dimensions_id
    51 schema:value pub.1035616904
    52 rdf:type schema:PropertyValue
    53 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    54 schema:name Mathematical Sciences
    55 rdf:type schema:DefinedTerm
    56 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
    57 schema:name Statistics
    58 rdf:type schema:DefinedTerm
    59 sg:journal.1120592 schema:issn 0095-4616
    60 1432-0606
    61 schema:name Applied Mathematics & Optimization
    62 rdf:type schema:Periodical
    63 sg:person.012375343637.10 schema:affiliation https://www.grid.ac/institutes/grid.27255.37
    64 schema:familyName Peng
    65 schema:givenName Shige
    66 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012375343637.10
    67 rdf:type schema:Person
    68 sg:pub.10.1007/bfb0120743 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014569035
    69 https://doi.org/10.1007/bfb0120743
    70 rdf:type schema:CreativeWork
    71 https://doi.org/10.1016/0167-6911(90)90082-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048954288
    72 rdf:type schema:CreativeWork
    73 https://doi.org/10.1137/0306023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062842810
    74 rdf:type schema:CreativeWork
    75 https://doi.org/10.1137/0306044 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062842858
    76 rdf:type schema:CreativeWork
    77 https://doi.org/10.1137/0310041 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062843032
    78 rdf:type schema:CreativeWork
    79 https://doi.org/10.1137/0314028 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062843265
    80 rdf:type schema:CreativeWork
    81 https://doi.org/10.1137/0328054 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062844229
    82 rdf:type schema:CreativeWork
    83 https://doi.org/10.1137/0330018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062844346
    84 rdf:type schema:CreativeWork
    85 https://doi.org/10.1137/1020004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062861199
    86 rdf:type schema:CreativeWork
    87 https://www.grid.ac/institutes/grid.27255.37 schema:alternateName Shandong University
    88 schema:name Department of Mathematics, Shandong University, 250100, Jinan, Shandong, People's Republic of China
    89 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...