Subspaces and polynomial factorizations over finite fields View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1995-05

AUTHORS

Therese C. Y. Lee, Scott A. Vanstone

ABSTRACT

Recently Niederreiter described a new method for factoring polynomials over finite fields. As with the Berlekamp technique, the method requires the construction of a linear subspace whose dimension is precisely the number of irreducible factors of the polynomial being considered. This paper explores the connection between these subspaces and gives a characterization of other subspaces having properties which are similar. More... »

PAGES

147-157

References to SciGraph publications

  • 1993-06. A new efficient factorization algorithm for polynomials over small finite fields in APPLICABLE ALGEBRA IN ENGINEERING, COMMUNICATION AND COMPUTING
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/bf01195333

    DOI

    http://dx.doi.org/10.1007/bf01195333

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1011102685


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Combinatorics and Optimization, University of Waterloo, N2L 3G1, Waterloo, Ontario, Canada", 
              "id": "http://www.grid.ac/institutes/grid.46078.3d", 
              "name": [
                "Department of Combinatorics and Optimization, University of Waterloo, N2L 3G1, Waterloo, Ontario, Canada"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lee", 
            "givenName": "Therese C. Y.", 
            "id": "sg:person.014753401305.53", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014753401305.53"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Combinatorics and Optimization, University of Waterloo, N2L 3G1, Waterloo, Ontario, Canada", 
              "id": "http://www.grid.ac/institutes/grid.46078.3d", 
              "name": [
                "Department of Combinatorics and Optimization, University of Waterloo, N2L 3G1, Waterloo, Ontario, Canada"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Vanstone", 
            "givenName": "Scott A.", 
            "id": "sg:person.010344544767.07", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010344544767.07"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf01386831", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028401633", 
              "https://doi.org/10.1007/bf01386831"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1995-05", 
        "datePublishedReg": "1995-05-01", 
        "description": "Recently Niederreiter described a new method for factoring polynomials over finite fields. As with the Berlekamp technique, the method requires the construction of a linear subspace whose dimension is precisely the number of irreducible factors of the polynomial being considered. This paper explores the connection between these subspaces and gives a characterization of other subspaces having properties which are similar.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/bf01195333", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1136287", 
            "issn": [
              "0938-1279", 
              "1432-0622"
            ], 
            "name": "Applicable Algebra in Engineering, Communication and Computing", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "3", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "6"
          }
        ], 
        "keywords": [
          "finite field", 
          "linear subspace", 
          "polynomial factorization", 
          "irreducible factors", 
          "subspace", 
          "polynomials", 
          "Niederreiter", 
          "new method", 
          "field", 
          "factorization", 
          "dimensions", 
          "properties", 
          "connection", 
          "technique", 
          "construction", 
          "number", 
          "characterization", 
          "factors", 
          "method", 
          "paper"
        ], 
        "name": "Subspaces and polynomial factorizations over finite fields", 
        "pagination": "147-157", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1011102685"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/bf01195333"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/bf01195333", 
          "https://app.dimensions.ai/details/publication/pub.1011102685"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-09-02T15:49", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_291.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/bf01195333"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01195333'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01195333'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01195333'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01195333'


     

    This table displays all metadata directly associated to this object as RDF triples.

    88 TRIPLES      21 PREDICATES      46 URIs      37 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/bf01195333 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author N38fc739c1c6541da99c2ee882ad64fa1
    4 schema:citation sg:pub.10.1007/bf01386831
    5 schema:datePublished 1995-05
    6 schema:datePublishedReg 1995-05-01
    7 schema:description Recently Niederreiter described a new method for factoring polynomials over finite fields. As with the Berlekamp technique, the method requires the construction of a linear subspace whose dimension is precisely the number of irreducible factors of the polynomial being considered. This paper explores the connection between these subspaces and gives a characterization of other subspaces having properties which are similar.
    8 schema:genre article
    9 schema:isAccessibleForFree false
    10 schema:isPartOf N0477e23e8d5644b5bfe38c81875f844c
    11 N0a8a3dcf808545dd9c00d2d9873308cf
    12 sg:journal.1136287
    13 schema:keywords Niederreiter
    14 characterization
    15 connection
    16 construction
    17 dimensions
    18 factorization
    19 factors
    20 field
    21 finite field
    22 irreducible factors
    23 linear subspace
    24 method
    25 new method
    26 number
    27 paper
    28 polynomial factorization
    29 polynomials
    30 properties
    31 subspace
    32 technique
    33 schema:name Subspaces and polynomial factorizations over finite fields
    34 schema:pagination 147-157
    35 schema:productId N28d35e3a00fb44eda19dd0e8ecd1d40c
    36 Nef11d764f4514ce1a8d6b98f0b7597a5
    37 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011102685
    38 https://doi.org/10.1007/bf01195333
    39 schema:sdDatePublished 2022-09-02T15:49
    40 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    41 schema:sdPublisher N60231c0dcc08417986e4726c45d3791d
    42 schema:url https://doi.org/10.1007/bf01195333
    43 sgo:license sg:explorer/license/
    44 sgo:sdDataset articles
    45 rdf:type schema:ScholarlyArticle
    46 N0477e23e8d5644b5bfe38c81875f844c schema:issueNumber 3
    47 rdf:type schema:PublicationIssue
    48 N0a8a3dcf808545dd9c00d2d9873308cf schema:volumeNumber 6
    49 rdf:type schema:PublicationVolume
    50 N0c4bd938606548f1ac1dea65f23532b1 rdf:first sg:person.010344544767.07
    51 rdf:rest rdf:nil
    52 N28d35e3a00fb44eda19dd0e8ecd1d40c schema:name dimensions_id
    53 schema:value pub.1011102685
    54 rdf:type schema:PropertyValue
    55 N38fc739c1c6541da99c2ee882ad64fa1 rdf:first sg:person.014753401305.53
    56 rdf:rest N0c4bd938606548f1ac1dea65f23532b1
    57 N60231c0dcc08417986e4726c45d3791d schema:name Springer Nature - SN SciGraph project
    58 rdf:type schema:Organization
    59 Nef11d764f4514ce1a8d6b98f0b7597a5 schema:name doi
    60 schema:value 10.1007/bf01195333
    61 rdf:type schema:PropertyValue
    62 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    63 schema:name Mathematical Sciences
    64 rdf:type schema:DefinedTerm
    65 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    66 schema:name Pure Mathematics
    67 rdf:type schema:DefinedTerm
    68 sg:journal.1136287 schema:issn 0938-1279
    69 1432-0622
    70 schema:name Applicable Algebra in Engineering, Communication and Computing
    71 schema:publisher Springer Nature
    72 rdf:type schema:Periodical
    73 sg:person.010344544767.07 schema:affiliation grid-institutes:grid.46078.3d
    74 schema:familyName Vanstone
    75 schema:givenName Scott A.
    76 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010344544767.07
    77 rdf:type schema:Person
    78 sg:person.014753401305.53 schema:affiliation grid-institutes:grid.46078.3d
    79 schema:familyName Lee
    80 schema:givenName Therese C. Y.
    81 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014753401305.53
    82 rdf:type schema:Person
    83 sg:pub.10.1007/bf01386831 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028401633
    84 https://doi.org/10.1007/bf01386831
    85 rdf:type schema:CreativeWork
    86 grid-institutes:grid.46078.3d schema:alternateName Department of Combinatorics and Optimization, University of Waterloo, N2L 3G1, Waterloo, Ontario, Canada
    87 schema:name Department of Combinatorics and Optimization, University of Waterloo, N2L 3G1, Waterloo, Ontario, Canada
    88 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...