One-sided tangential interpolation for operator-valued Hardy functions on polydisks View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1999-09

AUTHORS

D. Alpay, V. Bolotnikov, L. Rodman

ABSTRACT

All solutions of one-sided tangential interpolation problems with Hilbert norm constraints for operator-valued Hardy functions on the polydisk are described. The minimal norm solution is explicitly expressed in terms of the interpolation data.

PAGES

253-270

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf01193902

DOI

http://dx.doi.org/10.1007/bf01193902

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1004773539


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "author": [
      {
        "affiliation": {
          "alternateName": "Ben-Gurion University of the Negev", 
          "id": "https://www.grid.ac/institutes/grid.7489.2", 
          "name": [
            "Department of Mathematics, Ben-Gurion University of the Negev, 84105, Beer-Sheva, Israel"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Alpay", 
        "givenName": "D.", 
        "id": "sg:person.011517101346.40", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011517101346.40"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "College of William & Mary", 
          "id": "https://www.grid.ac/institutes/grid.264889.9", 
          "name": [
            "Department of Mathematics, College of William and Mary, 23187-8795, Williamsburg, VA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bolotnikov", 
        "givenName": "V.", 
        "id": "sg:person.01130533744.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01130533744.43"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "College of William & Mary", 
          "id": "https://www.grid.ac/institutes/grid.264889.9", 
          "name": [
            "Department of Mathematics, College of William and Mary, 23187-8795, Williamsburg, VA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rodman", 
        "givenName": "L.", 
        "id": "sg:person.0727056254.14", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0727056254.14"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf01456817", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005171999", 
          "https://doi.org/10.1007/bf01456817"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01456817", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005171999", 
          "https://doi.org/10.1007/bf01456817"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jmaa.1996.0192", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005321408"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1008941350", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-0348-7712-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008941350", 
          "https://doi.org/10.1007/978-3-0348-7712-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-0348-7712-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008941350", 
          "https://doi.org/10.1007/978-3-0348-7712-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/s0002-9939-1973-0312254-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017342693"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jfan.1994.1105", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019750556"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0024-3795(94)00074-n", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030446739"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1043632982", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-0348-7709-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043632982", 
          "https://doi.org/10.1007/978-3-0348-7709-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-0348-7709-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043632982", 
          "https://doi.org/10.1007/978-3-0348-7709-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01193505", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046510170", 
          "https://doi.org/10.1007/bf01193505"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01193505", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046510170", 
          "https://doi.org/10.1007/bf01193505"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0764-4442(98)80393-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046727984"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jfan.1998.3278", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047954570"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0305004100030401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053843559"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/s0273-0979-1994-00499-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059338941"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1999-09", 
    "datePublishedReg": "1999-09-01", 
    "description": "All solutions of one-sided tangential interpolation problems with Hilbert norm constraints for operator-valued Hardy functions on the polydisk are described. The minimal norm solution is explicitly expressed in terms of the interpolation data.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf01193902", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136245", 
        "issn": [
          "0378-620X", 
          "1420-8989"
        ], 
        "name": "Integral Equations and Operator Theory", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "35"
      }
    ], 
    "name": "One-sided tangential interpolation for operator-valued Hardy functions on polydisks", 
    "pagination": "253-270", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "16bed3e76769449062b511d9c8f6cf8cd734d4a387e6b551f06b8afa6aa70ce5"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf01193902"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1004773539"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf01193902", 
      "https://app.dimensions.ai/details/publication/pub.1004773539"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:28", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000370_0000000370/records_46744_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/BF01193902"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01193902'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01193902'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01193902'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01193902'


 

This table displays all metadata directly associated to this object as RDF triples.

114 TRIPLES      20 PREDICATES      39 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf01193902 schema:author N9e569d5b1b6e4174a29b0efadc5a18c4
2 schema:citation sg:pub.10.1007/978-3-0348-7709-1
3 sg:pub.10.1007/978-3-0348-7712-1
4 sg:pub.10.1007/bf01193505
5 sg:pub.10.1007/bf01456817
6 https://app.dimensions.ai/details/publication/pub.1008941350
7 https://app.dimensions.ai/details/publication/pub.1043632982
8 https://doi.org/10.1006/jfan.1994.1105
9 https://doi.org/10.1006/jfan.1998.3278
10 https://doi.org/10.1006/jmaa.1996.0192
11 https://doi.org/10.1016/0024-3795(94)00074-n
12 https://doi.org/10.1016/s0764-4442(98)80393-5
13 https://doi.org/10.1017/s0305004100030401
14 https://doi.org/10.1090/s0002-9939-1973-0312254-4
15 https://doi.org/10.1090/s0273-0979-1994-00499-9
16 schema:datePublished 1999-09
17 schema:datePublishedReg 1999-09-01
18 schema:description All solutions of one-sided tangential interpolation problems with Hilbert norm constraints for operator-valued Hardy functions on the polydisk are described. The minimal norm solution is explicitly expressed in terms of the interpolation data.
19 schema:genre research_article
20 schema:inLanguage en
21 schema:isAccessibleForFree false
22 schema:isPartOf Nea6f1924980d4497907f187e218f1daf
23 Nf561ae1177f24dcca84c0c5bf55e6315
24 sg:journal.1136245
25 schema:name One-sided tangential interpolation for operator-valued Hardy functions on polydisks
26 schema:pagination 253-270
27 schema:productId N5603eaddc9b14ecea4ef261cce15f1f9
28 Na12cdcda315f4ad699ca66ac9ceeeb8c
29 Nd9181ed263ad4a9ca2b8fdd4c7692d85
30 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004773539
31 https://doi.org/10.1007/bf01193902
32 schema:sdDatePublished 2019-04-11T13:28
33 schema:sdLicense https://scigraph.springernature.com/explorer/license/
34 schema:sdPublisher N27857f56188f4ec7883f0bdcec6e16e8
35 schema:url http://link.springer.com/10.1007/BF01193902
36 sgo:license sg:explorer/license/
37 sgo:sdDataset articles
38 rdf:type schema:ScholarlyArticle
39 N27857f56188f4ec7883f0bdcec6e16e8 schema:name Springer Nature - SN SciGraph project
40 rdf:type schema:Organization
41 N5603eaddc9b14ecea4ef261cce15f1f9 schema:name doi
42 schema:value 10.1007/bf01193902
43 rdf:type schema:PropertyValue
44 N9e569d5b1b6e4174a29b0efadc5a18c4 rdf:first sg:person.011517101346.40
45 rdf:rest Ne2054cfcad8448cb83a4b8f432ac350f
46 Na12cdcda315f4ad699ca66ac9ceeeb8c schema:name readcube_id
47 schema:value 16bed3e76769449062b511d9c8f6cf8cd734d4a387e6b551f06b8afa6aa70ce5
48 rdf:type schema:PropertyValue
49 Nd45e489c3a2b4f35a84ae2bedca8b55a rdf:first sg:person.0727056254.14
50 rdf:rest rdf:nil
51 Nd9181ed263ad4a9ca2b8fdd4c7692d85 schema:name dimensions_id
52 schema:value pub.1004773539
53 rdf:type schema:PropertyValue
54 Ne2054cfcad8448cb83a4b8f432ac350f rdf:first sg:person.01130533744.43
55 rdf:rest Nd45e489c3a2b4f35a84ae2bedca8b55a
56 Nea6f1924980d4497907f187e218f1daf schema:issueNumber 3
57 rdf:type schema:PublicationIssue
58 Nf561ae1177f24dcca84c0c5bf55e6315 schema:volumeNumber 35
59 rdf:type schema:PublicationVolume
60 sg:journal.1136245 schema:issn 0378-620X
61 1420-8989
62 schema:name Integral Equations and Operator Theory
63 rdf:type schema:Periodical
64 sg:person.01130533744.43 schema:affiliation https://www.grid.ac/institutes/grid.264889.9
65 schema:familyName Bolotnikov
66 schema:givenName V.
67 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01130533744.43
68 rdf:type schema:Person
69 sg:person.011517101346.40 schema:affiliation https://www.grid.ac/institutes/grid.7489.2
70 schema:familyName Alpay
71 schema:givenName D.
72 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011517101346.40
73 rdf:type schema:Person
74 sg:person.0727056254.14 schema:affiliation https://www.grid.ac/institutes/grid.264889.9
75 schema:familyName Rodman
76 schema:givenName L.
77 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0727056254.14
78 rdf:type schema:Person
79 sg:pub.10.1007/978-3-0348-7709-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043632982
80 https://doi.org/10.1007/978-3-0348-7709-1
81 rdf:type schema:CreativeWork
82 sg:pub.10.1007/978-3-0348-7712-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008941350
83 https://doi.org/10.1007/978-3-0348-7712-1
84 rdf:type schema:CreativeWork
85 sg:pub.10.1007/bf01193505 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046510170
86 https://doi.org/10.1007/bf01193505
87 rdf:type schema:CreativeWork
88 sg:pub.10.1007/bf01456817 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005171999
89 https://doi.org/10.1007/bf01456817
90 rdf:type schema:CreativeWork
91 https://app.dimensions.ai/details/publication/pub.1008941350 schema:CreativeWork
92 https://app.dimensions.ai/details/publication/pub.1043632982 schema:CreativeWork
93 https://doi.org/10.1006/jfan.1994.1105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019750556
94 rdf:type schema:CreativeWork
95 https://doi.org/10.1006/jfan.1998.3278 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047954570
96 rdf:type schema:CreativeWork
97 https://doi.org/10.1006/jmaa.1996.0192 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005321408
98 rdf:type schema:CreativeWork
99 https://doi.org/10.1016/0024-3795(94)00074-n schema:sameAs https://app.dimensions.ai/details/publication/pub.1030446739
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1016/s0764-4442(98)80393-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046727984
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1017/s0305004100030401 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053843559
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1090/s0002-9939-1973-0312254-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017342693
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1090/s0273-0979-1994-00499-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059338941
108 rdf:type schema:CreativeWork
109 https://www.grid.ac/institutes/grid.264889.9 schema:alternateName College of William & Mary
110 schema:name Department of Mathematics, College of William and Mary, 23187-8795, Williamsburg, VA, USA
111 rdf:type schema:Organization
112 https://www.grid.ac/institutes/grid.7489.2 schema:alternateName Ben-Gurion University of the Negev
113 schema:name Department of Mathematics, Ben-Gurion University of the Negev, 84105, Beer-Sheva, Israel
114 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...