Index formulae for subspaces of Kreîn spaces View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1996-03

AUTHORS

AAD Dijksma, Aurelian Gheondea

ABSTRACT

For a subspaceS of a Kreîn spaceK and an arbitrary fundamental decompositionK=K−[+]K+ ofK, we prove the index formula where κ±(S) stands for the positive/negative signature ofS. The difference dim(S∩K−)−dim(S⊥∩K+), provided it is well defined, is called the index ofS. The formula turns out to unify other known index formulac for operators or subspaces in a Kreîn space. More... »

PAGES

58-72

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf01192042

DOI

http://dx.doi.org/10.1007/bf01192042

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1015824825


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biochemistry and Cell Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Groningen", 
          "id": "https://www.grid.ac/institutes/grid.4830.f", 
          "name": [
            "Department of Mathematics, University of Groningen, P. O. Box 800, 9700 AV, Groningen, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dijksma", 
        "givenName": "AAD", 
        "id": "sg:person.013762723211.39", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013762723211.39"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Institutul de Matematic\u00e2 al, Academiei Rom\u00e4ne, C.P. 1-764, 70700, Bucure\u015fti, Rom\u00e2nia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gheondea", 
        "givenName": "Aurelian", 
        "id": "sg:person.016700571527.26", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016700571527.26"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-3-642-65567-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011407145", 
          "https://doi.org/10.1007/978-3-642-65567-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-65567-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011407145", 
          "https://doi.org/10.1007/978-3-642-65567-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01075773", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011609343", 
          "https://doi.org/10.1007/bf01075773"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01075773", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011609343", 
          "https://doi.org/10.1007/bf01075773"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-0348-8575-1_7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040296755", 
          "https://doi.org/10.1007/978-3-0348-8575-1_7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-0348-8575-1_7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040296755", 
          "https://doi.org/10.1007/978-3-0348-8575-1_7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1052525023", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-0348-7509-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052525023", 
          "https://doi.org/10.1007/978-3-0348-7509-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-0348-7509-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052525023", 
          "https://doi.org/10.1007/978-3-0348-7509-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1307/mmj/1029003552", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064976412"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1996-03", 
    "datePublishedReg": "1996-03-01", 
    "description": "For a subspaceS of a Kre\u00een spaceK and an arbitrary fundamental decompositionK=K\u2212[+]K+ ofK, we prove the index formula where \u03ba\u00b1(S) stands for the positive/negative signature ofS. The difference dim(S\u2229K\u2212)\u2212dim(S\u22a5\u2229K+), provided it is well defined, is called the index ofS. The formula turns out to unify other known index formulac for operators or subspaces in a Kre\u00een space.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf01192042", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136245", 
        "issn": [
          "0378-620X", 
          "1420-8989"
        ], 
        "name": "Integral Equations and Operator Theory", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "25"
      }
    ], 
    "name": "Index formulae for subspaces of Kre\u00een spaces", 
    "pagination": "58-72", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "4b66d57f4d9ecdb7197b0016414c1937882f2aef1e5be2717f6cf60fcfce9fd5"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf01192042"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1015824825"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf01192042", 
      "https://app.dimensions.ai/details/publication/pub.1015824825"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:35", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000370_0000000370/records_46775_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/BF01192042"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01192042'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01192042'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01192042'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01192042'


 

This table displays all metadata directly associated to this object as RDF triples.

91 TRIPLES      21 PREDICATES      33 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf01192042 schema:about anzsrc-for:06
2 anzsrc-for:0601
3 schema:author N064d5ba628c64eb194d79d7df3e675e9
4 schema:citation sg:pub.10.1007/978-3-0348-7509-7
5 sg:pub.10.1007/978-3-0348-8575-1_7
6 sg:pub.10.1007/978-3-642-65567-8
7 sg:pub.10.1007/bf01075773
8 https://app.dimensions.ai/details/publication/pub.1052525023
9 https://doi.org/10.1307/mmj/1029003552
10 schema:datePublished 1996-03
11 schema:datePublishedReg 1996-03-01
12 schema:description For a subspaceS of a Kreîn spaceK and an arbitrary fundamental decompositionK=K−[+]K+ ofK, we prove the index formula where κ±(S) stands for the positive/negative signature ofS. The difference dim(S∩K−)−dim(S⊥∩K+), provided it is well defined, is called the index ofS. The formula turns out to unify other known index formulac for operators or subspaces in a Kreîn space.
13 schema:genre research_article
14 schema:inLanguage en
15 schema:isAccessibleForFree false
16 schema:isPartOf N477f51cfee97486c8e438501f4646f0f
17 Nf7c1b9fb3fc3492f89a8defcf9fb0453
18 sg:journal.1136245
19 schema:name Index formulae for subspaces of Kreîn spaces
20 schema:pagination 58-72
21 schema:productId N94f656816f374ada8a73113209ea2911
22 Nada0d019d44343f1955ba25d1d05afef
23 Nbd1a9a03555e4247a8fad7e26a192a42
24 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015824825
25 https://doi.org/10.1007/bf01192042
26 schema:sdDatePublished 2019-04-11T13:35
27 schema:sdLicense https://scigraph.springernature.com/explorer/license/
28 schema:sdPublisher Nb80b7841dd0b416c806281aac6148883
29 schema:url http://link.springer.com/10.1007/BF01192042
30 sgo:license sg:explorer/license/
31 sgo:sdDataset articles
32 rdf:type schema:ScholarlyArticle
33 N064d5ba628c64eb194d79d7df3e675e9 rdf:first sg:person.013762723211.39
34 rdf:rest Nc54998279efa433fa04d194f6ec4faaa
35 N477f51cfee97486c8e438501f4646f0f schema:volumeNumber 25
36 rdf:type schema:PublicationVolume
37 N94f656816f374ada8a73113209ea2911 schema:name doi
38 schema:value 10.1007/bf01192042
39 rdf:type schema:PropertyValue
40 Nada0d019d44343f1955ba25d1d05afef schema:name dimensions_id
41 schema:value pub.1015824825
42 rdf:type schema:PropertyValue
43 Nb61c9cc882f245739cf0766e2629b7d6 schema:name Institutul de Matematicâ al, Academiei Romäne, C.P. 1-764, 70700, Bucureşti, România
44 rdf:type schema:Organization
45 Nb80b7841dd0b416c806281aac6148883 schema:name Springer Nature - SN SciGraph project
46 rdf:type schema:Organization
47 Nbd1a9a03555e4247a8fad7e26a192a42 schema:name readcube_id
48 schema:value 4b66d57f4d9ecdb7197b0016414c1937882f2aef1e5be2717f6cf60fcfce9fd5
49 rdf:type schema:PropertyValue
50 Nc54998279efa433fa04d194f6ec4faaa rdf:first sg:person.016700571527.26
51 rdf:rest rdf:nil
52 Nf7c1b9fb3fc3492f89a8defcf9fb0453 schema:issueNumber 1
53 rdf:type schema:PublicationIssue
54 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
55 schema:name Biological Sciences
56 rdf:type schema:DefinedTerm
57 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
58 schema:name Biochemistry and Cell Biology
59 rdf:type schema:DefinedTerm
60 sg:journal.1136245 schema:issn 0378-620X
61 1420-8989
62 schema:name Integral Equations and Operator Theory
63 rdf:type schema:Periodical
64 sg:person.013762723211.39 schema:affiliation https://www.grid.ac/institutes/grid.4830.f
65 schema:familyName Dijksma
66 schema:givenName AAD
67 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013762723211.39
68 rdf:type schema:Person
69 sg:person.016700571527.26 schema:affiliation Nb61c9cc882f245739cf0766e2629b7d6
70 schema:familyName Gheondea
71 schema:givenName Aurelian
72 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016700571527.26
73 rdf:type schema:Person
74 sg:pub.10.1007/978-3-0348-7509-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052525023
75 https://doi.org/10.1007/978-3-0348-7509-7
76 rdf:type schema:CreativeWork
77 sg:pub.10.1007/978-3-0348-8575-1_7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040296755
78 https://doi.org/10.1007/978-3-0348-8575-1_7
79 rdf:type schema:CreativeWork
80 sg:pub.10.1007/978-3-642-65567-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011407145
81 https://doi.org/10.1007/978-3-642-65567-8
82 rdf:type schema:CreativeWork
83 sg:pub.10.1007/bf01075773 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011609343
84 https://doi.org/10.1007/bf01075773
85 rdf:type schema:CreativeWork
86 https://app.dimensions.ai/details/publication/pub.1052525023 schema:CreativeWork
87 https://doi.org/10.1307/mmj/1029003552 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064976412
88 rdf:type schema:CreativeWork
89 https://www.grid.ac/institutes/grid.4830.f schema:alternateName University of Groningen
90 schema:name Department of Mathematics, University of Groningen, P. O. Box 800, 9700 AV, Groningen, The Netherlands
91 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...