Index formulae for subspaces of Kreîn spaces View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1996-03

AUTHORS

AAD Dijksma, Aurelian Gheondea

ABSTRACT

For a subspaceS of a Kreîn spaceK and an arbitrary fundamental decompositionK=K−[+]K+ ofK, we prove the index formula where κ±(S) stands for the positive/negative signature ofS. The difference dim(S∩K−)−dim(S⊥∩K+), provided it is well defined, is called the index ofS. The formula turns out to unify other known index formulac for operators or subspaces in a Kreîn space. More... »

PAGES

58-72

References to SciGraph publications

  • 1974. Indefinite Inner Product Spaces in NONE
  • 1976-01. The theory of linear relations and spaces with an indefinite metric in FUNCTIONAL ANALYSIS AND ITS APPLICATIONS
  • 1990. Classes of Linear Operators Vol. I in NONE
  • 1993. Quasi-Contractions on Kreĭn Spaces in OPERATOR EXTENSIONS, INTERPOLATION OF FUNCTIONS AND RELATED TOPICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/bf01192042

    DOI

    http://dx.doi.org/10.1007/bf01192042

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1015824825


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biochemistry and Cell Biology", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "University of Groningen", 
              "id": "https://www.grid.ac/institutes/grid.4830.f", 
              "name": [
                "Department of Mathematics, University of Groningen, P. O. Box 800, 9700 AV, Groningen, The Netherlands"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Dijksma", 
            "givenName": "AAD", 
            "id": "sg:person.013762723211.39", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013762723211.39"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "Institutul de Matematic\u00e2 al, Academiei Rom\u00e4ne, C.P. 1-764, 70700, Bucure\u015fti, Rom\u00e2nia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Gheondea", 
            "givenName": "Aurelian", 
            "id": "sg:person.016700571527.26", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016700571527.26"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/978-3-642-65567-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011407145", 
              "https://doi.org/10.1007/978-3-642-65567-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-65567-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011407145", 
              "https://doi.org/10.1007/978-3-642-65567-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01075773", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011609343", 
              "https://doi.org/10.1007/bf01075773"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01075773", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011609343", 
              "https://doi.org/10.1007/bf01075773"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-0348-8575-1_7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040296755", 
              "https://doi.org/10.1007/978-3-0348-8575-1_7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-0348-8575-1_7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040296755", 
              "https://doi.org/10.1007/978-3-0348-8575-1_7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1052525023", 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-0348-7509-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052525023", 
              "https://doi.org/10.1007/978-3-0348-7509-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-0348-7509-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052525023", 
              "https://doi.org/10.1007/978-3-0348-7509-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1307/mmj/1029003552", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1064976412"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1996-03", 
        "datePublishedReg": "1996-03-01", 
        "description": "For a subspaceS of a Kre\u00een spaceK and an arbitrary fundamental decompositionK=K\u2212[+]K+ ofK, we prove the index formula where \u03ba\u00b1(S) stands for the positive/negative signature ofS. The difference dim(S\u2229K\u2212)\u2212dim(S\u22a5\u2229K+), provided it is well defined, is called the index ofS. The formula turns out to unify other known index formulac for operators or subspaces in a Kre\u00een space.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/bf01192042", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1136245", 
            "issn": [
              "0378-620X", 
              "1420-8989"
            ], 
            "name": "Integral Equations and Operator Theory", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "25"
          }
        ], 
        "name": "Index formulae for subspaces of Kre\u00een spaces", 
        "pagination": "58-72", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "4b66d57f4d9ecdb7197b0016414c1937882f2aef1e5be2717f6cf60fcfce9fd5"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/bf01192042"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1015824825"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/bf01192042", 
          "https://app.dimensions.ai/details/publication/pub.1015824825"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T13:35", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000370_0000000370/records_46775_00000000.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007/BF01192042"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01192042'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01192042'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01192042'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01192042'


     

    This table displays all metadata directly associated to this object as RDF triples.

    91 TRIPLES      21 PREDICATES      33 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/bf01192042 schema:about anzsrc-for:06
    2 anzsrc-for:0601
    3 schema:author N998f906cb71e420eb1987e240c305c7f
    4 schema:citation sg:pub.10.1007/978-3-0348-7509-7
    5 sg:pub.10.1007/978-3-0348-8575-1_7
    6 sg:pub.10.1007/978-3-642-65567-8
    7 sg:pub.10.1007/bf01075773
    8 https://app.dimensions.ai/details/publication/pub.1052525023
    9 https://doi.org/10.1307/mmj/1029003552
    10 schema:datePublished 1996-03
    11 schema:datePublishedReg 1996-03-01
    12 schema:description For a subspaceS of a Kreîn spaceK and an arbitrary fundamental decompositionK=K−[+]K+ ofK, we prove the index formula where κ±(S) stands for the positive/negative signature ofS. The difference dim(S∩K−)−dim(S⊥∩K+), provided it is well defined, is called the index ofS. The formula turns out to unify other known index formulac for operators or subspaces in a Kreîn space.
    13 schema:genre research_article
    14 schema:inLanguage en
    15 schema:isAccessibleForFree false
    16 schema:isPartOf N87e2667271b14ecd916bc39e24679c81
    17 Na4b49656afd140b9963d66fe0633a6ff
    18 sg:journal.1136245
    19 schema:name Index formulae for subspaces of Kreîn spaces
    20 schema:pagination 58-72
    21 schema:productId N03591a4f5e3e457b9998511819d6e011
    22 N488db9f1f3e54ba4b9f0941806c69354
    23 N75f262001e0b4499b7708133bb965b52
    24 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015824825
    25 https://doi.org/10.1007/bf01192042
    26 schema:sdDatePublished 2019-04-11T13:35
    27 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    28 schema:sdPublisher Nbb0daf9b14104db491b057e05d96dce0
    29 schema:url http://link.springer.com/10.1007/BF01192042
    30 sgo:license sg:explorer/license/
    31 sgo:sdDataset articles
    32 rdf:type schema:ScholarlyArticle
    33 N03591a4f5e3e457b9998511819d6e011 schema:name dimensions_id
    34 schema:value pub.1015824825
    35 rdf:type schema:PropertyValue
    36 N34277fa93c6b4505bf6330132906fb0a rdf:first sg:person.016700571527.26
    37 rdf:rest rdf:nil
    38 N488db9f1f3e54ba4b9f0941806c69354 schema:name doi
    39 schema:value 10.1007/bf01192042
    40 rdf:type schema:PropertyValue
    41 N75f262001e0b4499b7708133bb965b52 schema:name readcube_id
    42 schema:value 4b66d57f4d9ecdb7197b0016414c1937882f2aef1e5be2717f6cf60fcfce9fd5
    43 rdf:type schema:PropertyValue
    44 N82b61dc5fa434714b9d750d2a4b33101 schema:name Institutul de Matematicâ al, Academiei Romäne, C.P. 1-764, 70700, Bucureşti, România
    45 rdf:type schema:Organization
    46 N87e2667271b14ecd916bc39e24679c81 schema:volumeNumber 25
    47 rdf:type schema:PublicationVolume
    48 N998f906cb71e420eb1987e240c305c7f rdf:first sg:person.013762723211.39
    49 rdf:rest N34277fa93c6b4505bf6330132906fb0a
    50 Na4b49656afd140b9963d66fe0633a6ff schema:issueNumber 1
    51 rdf:type schema:PublicationIssue
    52 Nbb0daf9b14104db491b057e05d96dce0 schema:name Springer Nature - SN SciGraph project
    53 rdf:type schema:Organization
    54 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    55 schema:name Biological Sciences
    56 rdf:type schema:DefinedTerm
    57 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
    58 schema:name Biochemistry and Cell Biology
    59 rdf:type schema:DefinedTerm
    60 sg:journal.1136245 schema:issn 0378-620X
    61 1420-8989
    62 schema:name Integral Equations and Operator Theory
    63 rdf:type schema:Periodical
    64 sg:person.013762723211.39 schema:affiliation https://www.grid.ac/institutes/grid.4830.f
    65 schema:familyName Dijksma
    66 schema:givenName AAD
    67 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013762723211.39
    68 rdf:type schema:Person
    69 sg:person.016700571527.26 schema:affiliation N82b61dc5fa434714b9d750d2a4b33101
    70 schema:familyName Gheondea
    71 schema:givenName Aurelian
    72 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016700571527.26
    73 rdf:type schema:Person
    74 sg:pub.10.1007/978-3-0348-7509-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052525023
    75 https://doi.org/10.1007/978-3-0348-7509-7
    76 rdf:type schema:CreativeWork
    77 sg:pub.10.1007/978-3-0348-8575-1_7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040296755
    78 https://doi.org/10.1007/978-3-0348-8575-1_7
    79 rdf:type schema:CreativeWork
    80 sg:pub.10.1007/978-3-642-65567-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011407145
    81 https://doi.org/10.1007/978-3-642-65567-8
    82 rdf:type schema:CreativeWork
    83 sg:pub.10.1007/bf01075773 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011609343
    84 https://doi.org/10.1007/bf01075773
    85 rdf:type schema:CreativeWork
    86 https://app.dimensions.ai/details/publication/pub.1052525023 schema:CreativeWork
    87 https://doi.org/10.1307/mmj/1029003552 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064976412
    88 rdf:type schema:CreativeWork
    89 https://www.grid.ac/institutes/grid.4830.f schema:alternateName University of Groningen
    90 schema:name Department of Mathematics, University of Groningen, P. O. Box 800, 9700 AV, Groningen, The Netherlands
    91 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...