Elementary equivalent pairs of algebras associated with sets View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1991-09

AUTHORS

Colin Naturman, Henry Rose

ABSTRACT

The elementary equivalence of two full relation algebras, partition lattices or function monoids are shown to be equivalent to the second order equivalence of the cardinalities of the corresponding sets. This is shown to be related to elementary equivalence of permutation groups and ordinals. Infinite function monoids are shown to be ultrauniversal. More... »

PAGES

324-338

References to SciGraph publications

  • 1973-06. First order theory of permutation groups in ISRAEL JOURNAL OF MATHEMATICS
  • 1978. General Lattice Theory in NONE
  • 1973-09. There are just four second-order quantifiers in ISRAEL JOURNAL OF MATHEMATICS
  • 1981. A Course in Universal Algebra in NONE
  • 1971-12. On elementary types of symmetric groups in ALGEBRA UNIVERSALIS
  • 1985-02. Elementarily non-equivalent infinite partition lattices in ALGEBRA UNIVERSALIS
  • Journal

    TITLE

    Algebra universalis

    ISSUE

    3

    VOLUME

    28

    Author Affiliations

    Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/bf01191084

    DOI

    http://dx.doi.org/10.1007/bf01191084

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1026843784


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "University of Cape Town", 
              "id": "https://www.grid.ac/institutes/grid.7836.a", 
              "name": [
                "Department of Mathematics, University of Cape Town, Republic of South Africa"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Naturman", 
            "givenName": "Colin", 
            "id": "sg:person.013667500261.73", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013667500261.73"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Cape Town", 
              "id": "https://www.grid.ac/institutes/grid.7836.a", 
              "name": [
                "Department of Mathematics, University of Cape Town, Republic of South Africa"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Rose", 
            "givenName": "Henry", 
            "id": "sg:person.016656472563.42", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016656472563.42"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf02762670", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001389549", 
              "https://doi.org/10.1007/bf02762670"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-0348-7633-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013230685", 
              "https://doi.org/10.1007/978-3-0348-7633-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-0348-7633-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013230685", 
              "https://doi.org/10.1007/978-3-0348-7633-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2307/2266861", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020214866"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02787572", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023597583", 
              "https://doi.org/10.1007/bf02787572"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02787572", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023597583", 
              "https://doi.org/10.1007/bf02787572"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02944950", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029708980", 
              "https://doi.org/10.1007/bf02944950"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01236814", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032997602", 
              "https://doi.org/10.1007/bf01236814"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2307/2372074", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1069898771"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1109705173", 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4613-8130-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1109705173", 
              "https://doi.org/10.1007/978-1-4613-8130-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4613-8130-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1109705173", 
              "https://doi.org/10.1007/978-1-4613-8130-3"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1991-09", 
        "datePublishedReg": "1991-09-01", 
        "description": "The elementary equivalence of two full relation algebras, partition lattices or function monoids are shown to be equivalent to the second order equivalence of the cardinalities of the corresponding sets. This is shown to be related to elementary equivalence of permutation groups and ordinals. Infinite function monoids are shown to be ultrauniversal.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/bf01191084", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1136784", 
            "issn": [
              "0002-5240", 
              "1420-8911"
            ], 
            "name": "Algebra universalis", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "3", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "28"
          }
        ], 
        "name": "Elementary equivalent pairs of algebras associated with sets", 
        "pagination": "324-338", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "7fe0dcc76c366bc5261b10f3862af436c3435e2f11262d9395f032a14e57df12"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/bf01191084"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1026843784"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/bf01191084", 
          "https://app.dimensions.ai/details/publication/pub.1026843784"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T13:26", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000370_0000000370/records_46737_00000001.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007/BF01191084"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01191084'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01191084'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01191084'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01191084'


     

    This table displays all metadata directly associated to this object as RDF triples.

    100 TRIPLES      21 PREDICATES      36 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/bf01191084 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author Na8995b3e14f6401e89186cf486eddae7
    4 schema:citation sg:pub.10.1007/978-1-4613-8130-3
    5 sg:pub.10.1007/978-3-0348-7633-9
    6 sg:pub.10.1007/bf01236814
    7 sg:pub.10.1007/bf02762670
    8 sg:pub.10.1007/bf02787572
    9 sg:pub.10.1007/bf02944950
    10 https://app.dimensions.ai/details/publication/pub.1109705173
    11 https://doi.org/10.2307/2266861
    12 https://doi.org/10.2307/2372074
    13 schema:datePublished 1991-09
    14 schema:datePublishedReg 1991-09-01
    15 schema:description The elementary equivalence of two full relation algebras, partition lattices or function monoids are shown to be equivalent to the second order equivalence of the cardinalities of the corresponding sets. This is shown to be related to elementary equivalence of permutation groups and ordinals. Infinite function monoids are shown to be ultrauniversal.
    16 schema:genre research_article
    17 schema:inLanguage en
    18 schema:isAccessibleForFree false
    19 schema:isPartOf N04a7ecc84e5548d9bc055eb65e448d26
    20 N17ac6311029b40a48e47b4595b83603d
    21 sg:journal.1136784
    22 schema:name Elementary equivalent pairs of algebras associated with sets
    23 schema:pagination 324-338
    24 schema:productId N719f65d0e5ee46cc95d0bf7465500dec
    25 Nc1884b629c754410ae6e06446ab78fac
    26 Nf77948d0f8e74823968886f9225608b1
    27 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026843784
    28 https://doi.org/10.1007/bf01191084
    29 schema:sdDatePublished 2019-04-11T13:26
    30 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    31 schema:sdPublisher N795258a2cfac4da58710806ab7a822a5
    32 schema:url http://link.springer.com/10.1007/BF01191084
    33 sgo:license sg:explorer/license/
    34 sgo:sdDataset articles
    35 rdf:type schema:ScholarlyArticle
    36 N04a7ecc84e5548d9bc055eb65e448d26 schema:volumeNumber 28
    37 rdf:type schema:PublicationVolume
    38 N0f22cee2c7ca46e5be049ccdd281c38a rdf:first sg:person.016656472563.42
    39 rdf:rest rdf:nil
    40 N17ac6311029b40a48e47b4595b83603d schema:issueNumber 3
    41 rdf:type schema:PublicationIssue
    42 N719f65d0e5ee46cc95d0bf7465500dec schema:name readcube_id
    43 schema:value 7fe0dcc76c366bc5261b10f3862af436c3435e2f11262d9395f032a14e57df12
    44 rdf:type schema:PropertyValue
    45 N795258a2cfac4da58710806ab7a822a5 schema:name Springer Nature - SN SciGraph project
    46 rdf:type schema:Organization
    47 Na8995b3e14f6401e89186cf486eddae7 rdf:first sg:person.013667500261.73
    48 rdf:rest N0f22cee2c7ca46e5be049ccdd281c38a
    49 Nc1884b629c754410ae6e06446ab78fac schema:name dimensions_id
    50 schema:value pub.1026843784
    51 rdf:type schema:PropertyValue
    52 Nf77948d0f8e74823968886f9225608b1 schema:name doi
    53 schema:value 10.1007/bf01191084
    54 rdf:type schema:PropertyValue
    55 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    56 schema:name Mathematical Sciences
    57 rdf:type schema:DefinedTerm
    58 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    59 schema:name Pure Mathematics
    60 rdf:type schema:DefinedTerm
    61 sg:journal.1136784 schema:issn 0002-5240
    62 1420-8911
    63 schema:name Algebra universalis
    64 rdf:type schema:Periodical
    65 sg:person.013667500261.73 schema:affiliation https://www.grid.ac/institutes/grid.7836.a
    66 schema:familyName Naturman
    67 schema:givenName Colin
    68 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013667500261.73
    69 rdf:type schema:Person
    70 sg:person.016656472563.42 schema:affiliation https://www.grid.ac/institutes/grid.7836.a
    71 schema:familyName Rose
    72 schema:givenName Henry
    73 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016656472563.42
    74 rdf:type schema:Person
    75 sg:pub.10.1007/978-1-4613-8130-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109705173
    76 https://doi.org/10.1007/978-1-4613-8130-3
    77 rdf:type schema:CreativeWork
    78 sg:pub.10.1007/978-3-0348-7633-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013230685
    79 https://doi.org/10.1007/978-3-0348-7633-9
    80 rdf:type schema:CreativeWork
    81 sg:pub.10.1007/bf01236814 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032997602
    82 https://doi.org/10.1007/bf01236814
    83 rdf:type schema:CreativeWork
    84 sg:pub.10.1007/bf02762670 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001389549
    85 https://doi.org/10.1007/bf02762670
    86 rdf:type schema:CreativeWork
    87 sg:pub.10.1007/bf02787572 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023597583
    88 https://doi.org/10.1007/bf02787572
    89 rdf:type schema:CreativeWork
    90 sg:pub.10.1007/bf02944950 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029708980
    91 https://doi.org/10.1007/bf02944950
    92 rdf:type schema:CreativeWork
    93 https://app.dimensions.ai/details/publication/pub.1109705173 schema:CreativeWork
    94 https://doi.org/10.2307/2266861 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020214866
    95 rdf:type schema:CreativeWork
    96 https://doi.org/10.2307/2372074 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069898771
    97 rdf:type schema:CreativeWork
    98 https://www.grid.ac/institutes/grid.7836.a schema:alternateName University of Cape Town
    99 schema:name Department of Mathematics, University of Cape Town, Republic of South Africa
    100 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...