On the number of isomorphism classes of complete translation nets View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1992-08

AUTHORS

Dieter Jungnickel, Oliver Pfaff

ABSTRACT

N/A

PAGES

192-196

References to SciGraph publications

  • 1991-09. The classification of doubly transitive affine designs in DESIGNS, CODES AND CRYPTOGRAPHY
  • 1988-07. Construction of two-dimensional flag-transitive planes in GEOMETRIAE DEDICATA
  • 1967-02. Über Blockpläne mit transitiver Dilatationsgruppe in MATHEMATISCHE ZEITSCHRIFT
  • 1984-06. The number of designs with classical parameters grows exponentially in GEOMETRIAE DEDICATA
  • 1983-06. Translations of symmetric and complete nets in MATHEMATISCHE ZEITSCHRIFT
  • 1983-12. The classification of the translation planes of order 16, I in GEOMETRIAE DEDICATA
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/bf01190682

    DOI

    http://dx.doi.org/10.1007/bf01190682

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1046934344


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Mathematisches Institut der Justus Liebig-Universit\u00e4t Gie\u00dfen, Arndtstra\u00dfe 2, DW-6300, Gie\u00dfen", 
              "id": "http://www.grid.ac/institutes/grid.8664.c", 
              "name": [
                "Mathematisches Institut der Justus Liebig-Universit\u00e4t Gie\u00dfen, Arndtstra\u00dfe 2, DW-6300, Gie\u00dfen"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Jungnickel", 
            "givenName": "Dieter", 
            "id": "sg:person.016273474670.91", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016273474670.91"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Mathematisches Institut der Justus Liebig-Universit\u00e4t Gie\u00dfen, Arndtstra\u00dfe 2, DW-6300, Gie\u00dfen", 
              "id": "http://www.grid.ac/institutes/grid.8664.c", 
              "name": [
                "Mathematisches Institut der Justus Liebig-Universit\u00e4t Gie\u00dfen, Arndtstra\u00dfe 2, DW-6300, Gie\u00dfen"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Pfaff", 
            "givenName": "Oliver", 
            "id": "sg:person.014017530007.98", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014017530007.98"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf00181610", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012880568", 
              "https://doi.org/10.1007/bf00181610"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01175626", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020406284", 
              "https://doi.org/10.1007/bf01175626"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01116569", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008988596", 
              "https://doi.org/10.1007/bf01116569"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00147760", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041495014", 
              "https://doi.org/10.1007/bf00147760"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00146828", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047644971", 
              "https://doi.org/10.1007/bf00146828"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00123761", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023740902", 
              "https://doi.org/10.1007/bf00123761"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1992-08", 
        "datePublishedReg": "1992-08-01", 
        "genre": "article", 
        "id": "sg:pub.10.1007/bf01190682", 
        "inLanguage": "en", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1052783", 
            "issn": [
              "0003-889X", 
              "1420-8938"
            ], 
            "name": "Archiv der Mathematik", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "2", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "59"
          }
        ], 
        "keywords": [
          "number", 
          "class", 
          "translation nets", 
          "nets", 
          "isomorphism classes", 
          "complete translation nets"
        ], 
        "name": "On the number of isomorphism classes of complete translation nets", 
        "pagination": "192-196", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1046934344"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/bf01190682"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/bf01190682", 
          "https://app.dimensions.ai/details/publication/pub.1046934344"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2021-12-01T19:08", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_242.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/bf01190682"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01190682'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01190682'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01190682'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01190682'


     

    This table displays all metadata directly associated to this object as RDF triples.

    94 TRIPLES      21 PREDICATES      37 URIs      23 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/bf01190682 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author Ndbefb68579d44613aa981c4359a85d80
    4 schema:citation sg:pub.10.1007/bf00123761
    5 sg:pub.10.1007/bf00146828
    6 sg:pub.10.1007/bf00147760
    7 sg:pub.10.1007/bf00181610
    8 sg:pub.10.1007/bf01116569
    9 sg:pub.10.1007/bf01175626
    10 schema:datePublished 1992-08
    11 schema:datePublishedReg 1992-08-01
    12 schema:genre article
    13 schema:inLanguage en
    14 schema:isAccessibleForFree false
    15 schema:isPartOf N3cf8d9b6eb4246fda92c0b5ddd9f6b0d
    16 N9cff06c4bd074fe6907e53cb60cfb11c
    17 sg:journal.1052783
    18 schema:keywords class
    19 complete translation nets
    20 isomorphism classes
    21 nets
    22 number
    23 translation nets
    24 schema:name On the number of isomorphism classes of complete translation nets
    25 schema:pagination 192-196
    26 schema:productId N5374d36d0ec14abdbf44ec1b5e0ce843
    27 Nff12196c03df47a8bfa1c5a0d53b5168
    28 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046934344
    29 https://doi.org/10.1007/bf01190682
    30 schema:sdDatePublished 2021-12-01T19:08
    31 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    32 schema:sdPublisher N8e7b49ee75e34e1d947f21e4a5e24fa1
    33 schema:url https://doi.org/10.1007/bf01190682
    34 sgo:license sg:explorer/license/
    35 sgo:sdDataset articles
    36 rdf:type schema:ScholarlyArticle
    37 N3cf8d9b6eb4246fda92c0b5ddd9f6b0d schema:issueNumber 2
    38 rdf:type schema:PublicationIssue
    39 N5374d36d0ec14abdbf44ec1b5e0ce843 schema:name dimensions_id
    40 schema:value pub.1046934344
    41 rdf:type schema:PropertyValue
    42 N67019eed3d5f4e768561449616217484 rdf:first sg:person.014017530007.98
    43 rdf:rest rdf:nil
    44 N8e7b49ee75e34e1d947f21e4a5e24fa1 schema:name Springer Nature - SN SciGraph project
    45 rdf:type schema:Organization
    46 N9cff06c4bd074fe6907e53cb60cfb11c schema:volumeNumber 59
    47 rdf:type schema:PublicationVolume
    48 Ndbefb68579d44613aa981c4359a85d80 rdf:first sg:person.016273474670.91
    49 rdf:rest N67019eed3d5f4e768561449616217484
    50 Nff12196c03df47a8bfa1c5a0d53b5168 schema:name doi
    51 schema:value 10.1007/bf01190682
    52 rdf:type schema:PropertyValue
    53 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    54 schema:name Mathematical Sciences
    55 rdf:type schema:DefinedTerm
    56 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    57 schema:name Pure Mathematics
    58 rdf:type schema:DefinedTerm
    59 sg:journal.1052783 schema:issn 0003-889X
    60 1420-8938
    61 schema:name Archiv der Mathematik
    62 schema:publisher Springer Nature
    63 rdf:type schema:Periodical
    64 sg:person.014017530007.98 schema:affiliation grid-institutes:grid.8664.c
    65 schema:familyName Pfaff
    66 schema:givenName Oliver
    67 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014017530007.98
    68 rdf:type schema:Person
    69 sg:person.016273474670.91 schema:affiliation grid-institutes:grid.8664.c
    70 schema:familyName Jungnickel
    71 schema:givenName Dieter
    72 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016273474670.91
    73 rdf:type schema:Person
    74 sg:pub.10.1007/bf00123761 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023740902
    75 https://doi.org/10.1007/bf00123761
    76 rdf:type schema:CreativeWork
    77 sg:pub.10.1007/bf00146828 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047644971
    78 https://doi.org/10.1007/bf00146828
    79 rdf:type schema:CreativeWork
    80 sg:pub.10.1007/bf00147760 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041495014
    81 https://doi.org/10.1007/bf00147760
    82 rdf:type schema:CreativeWork
    83 sg:pub.10.1007/bf00181610 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012880568
    84 https://doi.org/10.1007/bf00181610
    85 rdf:type schema:CreativeWork
    86 sg:pub.10.1007/bf01116569 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008988596
    87 https://doi.org/10.1007/bf01116569
    88 rdf:type schema:CreativeWork
    89 sg:pub.10.1007/bf01175626 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020406284
    90 https://doi.org/10.1007/bf01175626
    91 rdf:type schema:CreativeWork
    92 grid-institutes:grid.8664.c schema:alternateName Mathematisches Institut der Justus Liebig-Universität Gießen, Arndtstraße 2, DW-6300, Gießen
    93 schema:name Mathematisches Institut der Justus Liebig-Universität Gießen, Arndtstraße 2, DW-6300, Gießen
    94 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...