On the number of isomorphism classes of complete translation nets View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1992-08

AUTHORS

Dieter Jungnickel, Oliver Pfaff

ABSTRACT

N/A

PAGES

192-196

References to SciGraph publications

  • 1991-09. The classification of doubly transitive affine designs in DESIGNS, CODES AND CRYPTOGRAPHY
  • 1988-07. Construction of two-dimensional flag-transitive planes in GEOMETRIAE DEDICATA
  • 1967-02. Über Blockpläne mit transitiver Dilatationsgruppe in MATHEMATISCHE ZEITSCHRIFT
  • 1984-06. The number of designs with classical parameters grows exponentially in GEOMETRIAE DEDICATA
  • 1983-06. Translations of symmetric and complete nets in MATHEMATISCHE ZEITSCHRIFT
  • 1983-12. The classification of the translation planes of order 16, I in GEOMETRIAE DEDICATA
  • Journal

    TITLE

    Archiv der Mathematik

    ISSUE

    2

    VOLUME

    59

    Author Affiliations

    Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/bf01190682

    DOI

    http://dx.doi.org/10.1007/bf01190682

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1046934344


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "author": [
          {
            "affiliation": {
              "alternateName": "University of Giessen", 
              "id": "https://www.grid.ac/institutes/grid.8664.c", 
              "name": [
                "Mathematisches Institut der Justus Liebig-Universit\u00e4t Gie\u00dfen, Arndtstra\u00dfe 2, DW-6300, Gie\u00dfen"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Jungnickel", 
            "givenName": "Dieter", 
            "id": "sg:person.016273474670.91", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016273474670.91"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Giessen", 
              "id": "https://www.grid.ac/institutes/grid.8664.c", 
              "name": [
                "Mathematisches Institut der Justus Liebig-Universit\u00e4t Gie\u00dfen, Arndtstra\u00dfe 2, DW-6300, Gie\u00dfen"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Pfaff", 
            "givenName": "Oliver", 
            "id": "sg:person.014017530007.98", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014017530007.98"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf01116569", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008988596", 
              "https://doi.org/10.1007/bf01116569"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01116569", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008988596", 
              "https://doi.org/10.1007/bf01116569"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00181610", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012880568", 
              "https://doi.org/10.1007/bf00181610"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1017/cbo9781107325579.021", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016116133"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0021-8693(89)90217-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020094786"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01175626", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020406284", 
              "https://doi.org/10.1007/bf01175626"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01175626", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020406284", 
              "https://doi.org/10.1007/bf01175626"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0097-3165(82)90028-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023325075"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00123761", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023740902", 
              "https://doi.org/10.1007/bf00123761"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00123761", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023740902", 
              "https://doi.org/10.1007/bf00123761"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1090/s0002-9947-1943-0008892-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039627637"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00147760", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041495014", 
              "https://doi.org/10.1007/bf00147760"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00147760", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041495014", 
              "https://doi.org/10.1007/bf00147760"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00146828", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047644971", 
              "https://doi.org/10.1007/bf00146828"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00146828", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047644971", 
              "https://doi.org/10.1007/bf00146828"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1992-08", 
        "datePublishedReg": "1992-08-01", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/bf01190682", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1052783", 
            "issn": [
              "0003-889X", 
              "1420-8938"
            ], 
            "name": "Archiv der Mathematik", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "2", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "59"
          }
        ], 
        "name": "On the number of isomorphism classes of complete translation nets", 
        "pagination": "192-196", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "df942138a1de7a19e6ffecc0849b93027887394771fa99711e63e4be68a05130"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/bf01190682"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1046934344"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/bf01190682", 
          "https://app.dimensions.ai/details/publication/pub.1046934344"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T13:30", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000370_0000000370/records_46751_00000002.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007/BF01190682"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01190682'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01190682'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01190682'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01190682'


     

    This table displays all metadata directly associated to this object as RDF triples.

    95 TRIPLES      19 PREDICATES      34 URIs      18 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/bf01190682 schema:author N2ca4291cc32f4913950ff4c3e50b2df3
    2 schema:citation sg:pub.10.1007/bf00123761
    3 sg:pub.10.1007/bf00146828
    4 sg:pub.10.1007/bf00147760
    5 sg:pub.10.1007/bf00181610
    6 sg:pub.10.1007/bf01116569
    7 sg:pub.10.1007/bf01175626
    8 https://doi.org/10.1016/0021-8693(89)90217-2
    9 https://doi.org/10.1016/0097-3165(82)90028-0
    10 https://doi.org/10.1017/cbo9781107325579.021
    11 https://doi.org/10.1090/s0002-9947-1943-0008892-4
    12 schema:datePublished 1992-08
    13 schema:datePublishedReg 1992-08-01
    14 schema:genre research_article
    15 schema:inLanguage en
    16 schema:isAccessibleForFree false
    17 schema:isPartOf N3cc96a0289f343339cd3ee966024df6e
    18 N9b6b166e02524155a1ef04346b110f47
    19 sg:journal.1052783
    20 schema:name On the number of isomorphism classes of complete translation nets
    21 schema:pagination 192-196
    22 schema:productId N32fd9a1cbdc542da9d9fbc3b9dc7d0b4
    23 N581770a5a02346008b1329e9543c33b8
    24 Na951f7aaf6164734b5479af861e43180
    25 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046934344
    26 https://doi.org/10.1007/bf01190682
    27 schema:sdDatePublished 2019-04-11T13:30
    28 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    29 schema:sdPublisher Nff0e2a6763ed4cb08ede1c72d4d974c7
    30 schema:url http://link.springer.com/10.1007/BF01190682
    31 sgo:license sg:explorer/license/
    32 sgo:sdDataset articles
    33 rdf:type schema:ScholarlyArticle
    34 N2ca4291cc32f4913950ff4c3e50b2df3 rdf:first sg:person.016273474670.91
    35 rdf:rest N30d1a631bc2e46498f146507443dd211
    36 N30d1a631bc2e46498f146507443dd211 rdf:first sg:person.014017530007.98
    37 rdf:rest rdf:nil
    38 N32fd9a1cbdc542da9d9fbc3b9dc7d0b4 schema:name doi
    39 schema:value 10.1007/bf01190682
    40 rdf:type schema:PropertyValue
    41 N3cc96a0289f343339cd3ee966024df6e schema:issueNumber 2
    42 rdf:type schema:PublicationIssue
    43 N581770a5a02346008b1329e9543c33b8 schema:name readcube_id
    44 schema:value df942138a1de7a19e6ffecc0849b93027887394771fa99711e63e4be68a05130
    45 rdf:type schema:PropertyValue
    46 N9b6b166e02524155a1ef04346b110f47 schema:volumeNumber 59
    47 rdf:type schema:PublicationVolume
    48 Na951f7aaf6164734b5479af861e43180 schema:name dimensions_id
    49 schema:value pub.1046934344
    50 rdf:type schema:PropertyValue
    51 Nff0e2a6763ed4cb08ede1c72d4d974c7 schema:name Springer Nature - SN SciGraph project
    52 rdf:type schema:Organization
    53 sg:journal.1052783 schema:issn 0003-889X
    54 1420-8938
    55 schema:name Archiv der Mathematik
    56 rdf:type schema:Periodical
    57 sg:person.014017530007.98 schema:affiliation https://www.grid.ac/institutes/grid.8664.c
    58 schema:familyName Pfaff
    59 schema:givenName Oliver
    60 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014017530007.98
    61 rdf:type schema:Person
    62 sg:person.016273474670.91 schema:affiliation https://www.grid.ac/institutes/grid.8664.c
    63 schema:familyName Jungnickel
    64 schema:givenName Dieter
    65 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016273474670.91
    66 rdf:type schema:Person
    67 sg:pub.10.1007/bf00123761 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023740902
    68 https://doi.org/10.1007/bf00123761
    69 rdf:type schema:CreativeWork
    70 sg:pub.10.1007/bf00146828 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047644971
    71 https://doi.org/10.1007/bf00146828
    72 rdf:type schema:CreativeWork
    73 sg:pub.10.1007/bf00147760 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041495014
    74 https://doi.org/10.1007/bf00147760
    75 rdf:type schema:CreativeWork
    76 sg:pub.10.1007/bf00181610 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012880568
    77 https://doi.org/10.1007/bf00181610
    78 rdf:type schema:CreativeWork
    79 sg:pub.10.1007/bf01116569 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008988596
    80 https://doi.org/10.1007/bf01116569
    81 rdf:type schema:CreativeWork
    82 sg:pub.10.1007/bf01175626 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020406284
    83 https://doi.org/10.1007/bf01175626
    84 rdf:type schema:CreativeWork
    85 https://doi.org/10.1016/0021-8693(89)90217-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020094786
    86 rdf:type schema:CreativeWork
    87 https://doi.org/10.1016/0097-3165(82)90028-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023325075
    88 rdf:type schema:CreativeWork
    89 https://doi.org/10.1017/cbo9781107325579.021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016116133
    90 rdf:type schema:CreativeWork
    91 https://doi.org/10.1090/s0002-9947-1943-0008892-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039627637
    92 rdf:type schema:CreativeWork
    93 https://www.grid.ac/institutes/grid.8664.c schema:alternateName University of Giessen
    94 schema:name Mathematisches Institut der Justus Liebig-Universität Gießen, Arndtstraße 2, DW-6300, Gießen
    95 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...