Convexity properties of the minimum time function View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1995-06

AUTHORS

Piermarco Cannarsa, Carlo Sinestrari

ABSTRACT

This paper studies some regularity properties of the minimum time functionT for a nonlinear control system with a general targetK. Under a Petrov type controllability assumption,T is shown to be semiconcave if the distance fromK is semiconcave. A semiconvexity result also holds for linear control systems with convex targets. These properties are then applied to study the structure of the set of nondifferentiability points ofT. More... »

PAGES

273-298

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf01189393

DOI

http://dx.doi.org/10.1007/bf01189393

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1000572512


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Applied Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Rome Tor Vergata", 
          "id": "https://www.grid.ac/institutes/grid.6530.0", 
          "name": [
            "Dipartimento di Matematica, Universit\u00e1 di Roma \u201cTor Vergata,\u201d Via della Ricerca Scientifica, I-00133, Roma, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cannarsa", 
        "givenName": "Piermarco", 
        "id": "sg:person.014257010655.09", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014257010655.09"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Rome Tor Vergata", 
          "id": "https://www.grid.ac/institutes/grid.6530.0", 
          "name": [
            "Dipartimento di Matematica, Universit\u00e1 di Roma \u201cTor Vergata,\u201d Via della Ricerca Scientifica, I-00133, Roma, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sinestrari", 
        "givenName": "Carlo", 
        "id": "sg:person.010746770411.97", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010746770411.97"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/0362-546x(94)e0091-t", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001105785"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/s0002-9947-1984-0732102-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009454689"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1022683628650", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012240288", 
          "https://doi.org/10.1023/a:1022683628650"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/s0002-9947-1983-0690039-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031839902"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0021-8928(70)90060-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043091224"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0021-8928(70)90060-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043091224"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02567770", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052475767", 
          "https://doi.org/10.1007/bf02567770"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02567770", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052475767", 
          "https://doi.org/10.1007/bf02567770"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1070/sm1975v027n03abeh002522", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058199504"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/0325025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062843949"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/0325048", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062843972"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/0325062", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062843986"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/0327041", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062844140"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/0327076", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062844175"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/0328053", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062844228"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/0329068", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062844322"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1995-06", 
    "datePublishedReg": "1995-06-01", 
    "description": "This paper studies some regularity properties of the minimum time functionT for a nonlinear control system with a general targetK. Under a Petrov type controllability assumption,T is shown to be semiconcave if the distance fromK is semiconcave. A semiconvexity result also holds for linear control systems with convex targets. These properties are then applied to study the structure of the set of nondifferentiability points ofT.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf01189393", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1043284", 
        "issn": [
          "0944-2669", 
          "1432-0835"
        ], 
        "name": "Calculus of Variations and Partial Differential Equations", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "3"
      }
    ], 
    "name": "Convexity properties of the minimum time function", 
    "pagination": "273-298", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "02b9e0725f64b4b82b08c5a2c64a614e2d3eae285c200baead1aac685006a16c"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf01189393"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1000572512"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf01189393", 
      "https://app.dimensions.ai/details/publication/pub.1000572512"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:32", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000370_0000000370/records_46765_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2FBF01189393"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01189393'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01189393'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01189393'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01189393'


 

This table displays all metadata directly associated to this object as RDF triples.

112 TRIPLES      21 PREDICATES      41 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf01189393 schema:about anzsrc-for:01
2 anzsrc-for:0102
3 schema:author Nf137e7cb24ba47f28203470f882a331b
4 schema:citation sg:pub.10.1007/bf02567770
5 sg:pub.10.1023/a:1022683628650
6 https://doi.org/10.1016/0021-8928(70)90060-2
7 https://doi.org/10.1016/0362-546x(94)e0091-t
8 https://doi.org/10.1070/sm1975v027n03abeh002522
9 https://doi.org/10.1090/s0002-9947-1983-0690039-8
10 https://doi.org/10.1090/s0002-9947-1984-0732102-x
11 https://doi.org/10.1137/0325025
12 https://doi.org/10.1137/0325048
13 https://doi.org/10.1137/0325062
14 https://doi.org/10.1137/0327041
15 https://doi.org/10.1137/0327076
16 https://doi.org/10.1137/0328053
17 https://doi.org/10.1137/0329068
18 schema:datePublished 1995-06
19 schema:datePublishedReg 1995-06-01
20 schema:description This paper studies some regularity properties of the minimum time functionT for a nonlinear control system with a general targetK. Under a Petrov type controllability assumption,T is shown to be semiconcave if the distance fromK is semiconcave. A semiconvexity result also holds for linear control systems with convex targets. These properties are then applied to study the structure of the set of nondifferentiability points ofT.
21 schema:genre research_article
22 schema:inLanguage en
23 schema:isAccessibleForFree false
24 schema:isPartOf N981d3a9f27394bb0849150b9cf739a0b
25 Ne48c8d1030214954be765a0f1b2a8488
26 sg:journal.1043284
27 schema:name Convexity properties of the minimum time function
28 schema:pagination 273-298
29 schema:productId N1afd30125dbf4dea846453e2104045d3
30 N5a2159f1b65c487e8f5e598cf72478a5
31 Ne5a44da5ba1b4a3dac630d1b76d493c0
32 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000572512
33 https://doi.org/10.1007/bf01189393
34 schema:sdDatePublished 2019-04-11T13:32
35 schema:sdLicense https://scigraph.springernature.com/explorer/license/
36 schema:sdPublisher N42a3b160067b438eb4e9019fb7363d48
37 schema:url http://link.springer.com/10.1007%2FBF01189393
38 sgo:license sg:explorer/license/
39 sgo:sdDataset articles
40 rdf:type schema:ScholarlyArticle
41 N1afd30125dbf4dea846453e2104045d3 schema:name dimensions_id
42 schema:value pub.1000572512
43 rdf:type schema:PropertyValue
44 N42a3b160067b438eb4e9019fb7363d48 schema:name Springer Nature - SN SciGraph project
45 rdf:type schema:Organization
46 N5a2159f1b65c487e8f5e598cf72478a5 schema:name doi
47 schema:value 10.1007/bf01189393
48 rdf:type schema:PropertyValue
49 N981d3a9f27394bb0849150b9cf739a0b schema:volumeNumber 3
50 rdf:type schema:PublicationVolume
51 N996f288b19f140c59a2eb5b475b63586 rdf:first sg:person.010746770411.97
52 rdf:rest rdf:nil
53 Ne48c8d1030214954be765a0f1b2a8488 schema:issueNumber 3
54 rdf:type schema:PublicationIssue
55 Ne5a44da5ba1b4a3dac630d1b76d493c0 schema:name readcube_id
56 schema:value 02b9e0725f64b4b82b08c5a2c64a614e2d3eae285c200baead1aac685006a16c
57 rdf:type schema:PropertyValue
58 Nf137e7cb24ba47f28203470f882a331b rdf:first sg:person.014257010655.09
59 rdf:rest N996f288b19f140c59a2eb5b475b63586
60 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
61 schema:name Mathematical Sciences
62 rdf:type schema:DefinedTerm
63 anzsrc-for:0102 schema:inDefinedTermSet anzsrc-for:
64 schema:name Applied Mathematics
65 rdf:type schema:DefinedTerm
66 sg:journal.1043284 schema:issn 0944-2669
67 1432-0835
68 schema:name Calculus of Variations and Partial Differential Equations
69 rdf:type schema:Periodical
70 sg:person.010746770411.97 schema:affiliation https://www.grid.ac/institutes/grid.6530.0
71 schema:familyName Sinestrari
72 schema:givenName Carlo
73 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010746770411.97
74 rdf:type schema:Person
75 sg:person.014257010655.09 schema:affiliation https://www.grid.ac/institutes/grid.6530.0
76 schema:familyName Cannarsa
77 schema:givenName Piermarco
78 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014257010655.09
79 rdf:type schema:Person
80 sg:pub.10.1007/bf02567770 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052475767
81 https://doi.org/10.1007/bf02567770
82 rdf:type schema:CreativeWork
83 sg:pub.10.1023/a:1022683628650 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012240288
84 https://doi.org/10.1023/a:1022683628650
85 rdf:type schema:CreativeWork
86 https://doi.org/10.1016/0021-8928(70)90060-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043091224
87 rdf:type schema:CreativeWork
88 https://doi.org/10.1016/0362-546x(94)e0091-t schema:sameAs https://app.dimensions.ai/details/publication/pub.1001105785
89 rdf:type schema:CreativeWork
90 https://doi.org/10.1070/sm1975v027n03abeh002522 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058199504
91 rdf:type schema:CreativeWork
92 https://doi.org/10.1090/s0002-9947-1983-0690039-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031839902
93 rdf:type schema:CreativeWork
94 https://doi.org/10.1090/s0002-9947-1984-0732102-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1009454689
95 rdf:type schema:CreativeWork
96 https://doi.org/10.1137/0325025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062843949
97 rdf:type schema:CreativeWork
98 https://doi.org/10.1137/0325048 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062843972
99 rdf:type schema:CreativeWork
100 https://doi.org/10.1137/0325062 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062843986
101 rdf:type schema:CreativeWork
102 https://doi.org/10.1137/0327041 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062844140
103 rdf:type schema:CreativeWork
104 https://doi.org/10.1137/0327076 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062844175
105 rdf:type schema:CreativeWork
106 https://doi.org/10.1137/0328053 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062844228
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1137/0329068 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062844322
109 rdf:type schema:CreativeWork
110 https://www.grid.ac/institutes/grid.6530.0 schema:alternateName University of Rome Tor Vergata
111 schema:name Dipartimento di Matematica, Universitá di Roma “Tor Vergata,” Via della Ricerca Scientifica, I-00133, Roma, Italy
112 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...