A note on cyclic groups, finite fields, and the discrete logarithm problem View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1992-03

AUTHORS

Alfred J. Menezes, Scott A. Vanstone

ABSTRACT

We show how the discrete logarithm problem in some finite cyclic groups can easily be reduced to the discrete logarithm problem in a finite field. The cyclic groups that we consider are the set of points on a singular elliptic curve over a finite field, the set of points on a genus 0 curve over a finite field given by the Pell equation, and certain subgroups of the general linear group. More... »

PAGES

67-74

References to SciGraph publications

  • 1989-10. Hyperelliptic cryptosystems in JOURNAL OF CRYPTOLOGY
  • 1986-11. Discrete logarithms inGF(p) in ALGORITHMICA
  • 1988-06. A key-exchange system based on imaginary quadratic fields in JOURNAL OF CRYPTOLOGY
  • <error retrieving object. in <ERROR RETRIEVING OBJECT
  • 1985. Discrete logarithms in finite fields and their cryptographic significance in ADVANCES IN CRYPTOLOGY
  • <error retrieving object. in <ERROR RETRIEVING OBJECT
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/bf01189025

    DOI

    http://dx.doi.org/10.1007/bf01189025

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1002416399


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Combinatorics and Optimization, University of Waterloo, N2L 3G1, Waterloo, Ontario, Canada", 
              "id": "http://www.grid.ac/institutes/grid.46078.3d", 
              "name": [
                "Department of Combinatorics and Optimization, University of Waterloo, N2L 3G1, Waterloo, Ontario, Canada"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Menezes", 
            "givenName": "Alfred J.", 
            "id": "sg:person.012711653371.43", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012711653371.43"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Combinatorics and Optimization, University of Waterloo, N2L 3G1, Waterloo, Ontario, Canada", 
              "id": "http://www.grid.ac/institutes/grid.46078.3d", 
              "name": [
                "Department of Combinatorics and Optimization, University of Waterloo, N2L 3G1, Waterloo, Ontario, Canada"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Vanstone", 
            "givenName": "Scott A.", 
            "id": "sg:person.010344544767.07", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010344544767.07"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf02252872", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008777174", 
              "https://doi.org/10.1007/bf02252872"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02351719", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025449195", 
              "https://doi.org/10.1007/bf02351719"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01840433", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024039582", 
              "https://doi.org/10.1007/bf01840433"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4757-5119-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030858724", 
              "https://doi.org/10.1007/978-1-4757-5119-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-39757-4_20", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050029692", 
              "https://doi.org/10.1007/3-540-39757-4_20"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4757-1920-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017153141", 
              "https://doi.org/10.1007/978-1-4757-1920-8"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1992-03", 
        "datePublishedReg": "1992-03-01", 
        "description": "We show how the discrete logarithm problem in some finite cyclic groups can easily be reduced to the discrete logarithm problem in a finite field. The cyclic groups that we consider are the set of points on a singular elliptic curve over a finite field, the set of points on a genus 0 curve over a finite field given by the Pell equation, and certain subgroups of the general linear group.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/bf01189025", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1136287", 
            "issn": [
              "0938-1279", 
              "1432-0622"
            ], 
            "name": "Applicable Algebra in Engineering, Communication and Computing", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "3"
          }
        ], 
        "keywords": [
          "finite field", 
          "set of points", 
          "cyclic group", 
          "discrete logarithm problem", 
          "general linear group", 
          "finite cyclic groups", 
          "genus 0 curves", 
          "logarithm problem", 
          "linear group", 
          "Pell equation", 
          "elliptic curves", 
          "problem", 
          "field", 
          "equations", 
          "set", 
          "point", 
          "curves", 
          "certain subgroups", 
          "note", 
          "subgroups", 
          "group"
        ], 
        "name": "A note on cyclic groups, finite fields, and the discrete logarithm problem", 
        "pagination": "67-74", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1002416399"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/bf01189025"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/bf01189025", 
          "https://app.dimensions.ai/details/publication/pub.1002416399"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-10-01T06:29", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/article/article_247.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/bf01189025"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01189025'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01189025'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01189025'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01189025'


     

    This table displays all metadata directly associated to this object as RDF triples.

    109 TRIPLES      21 PREDICATES      52 URIs      38 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/bf01189025 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author Nd172f08d0296472585be977e5a58a6f2
    4 schema:citation sg:pub.10.1007/3-540-39757-4_20
    5 sg:pub.10.1007/978-1-4757-1920-8
    6 sg:pub.10.1007/978-1-4757-5119-2
    7 sg:pub.10.1007/bf01840433
    8 sg:pub.10.1007/bf02252872
    9 sg:pub.10.1007/bf02351719
    10 schema:datePublished 1992-03
    11 schema:datePublishedReg 1992-03-01
    12 schema:description We show how the discrete logarithm problem in some finite cyclic groups can easily be reduced to the discrete logarithm problem in a finite field. The cyclic groups that we consider are the set of points on a singular elliptic curve over a finite field, the set of points on a genus 0 curve over a finite field given by the Pell equation, and certain subgroups of the general linear group.
    13 schema:genre article
    14 schema:isAccessibleForFree false
    15 schema:isPartOf N4b59cf54162d462985306df15ed0e05d
    16 N8f40174b952a4ea7a1322a59ecd50a7b
    17 sg:journal.1136287
    18 schema:keywords Pell equation
    19 certain subgroups
    20 curves
    21 cyclic group
    22 discrete logarithm problem
    23 elliptic curves
    24 equations
    25 field
    26 finite cyclic groups
    27 finite field
    28 general linear group
    29 genus 0 curves
    30 group
    31 linear group
    32 logarithm problem
    33 note
    34 point
    35 problem
    36 set
    37 set of points
    38 subgroups
    39 schema:name A note on cyclic groups, finite fields, and the discrete logarithm problem
    40 schema:pagination 67-74
    41 schema:productId N0cd6fe2405964b77baad3036e8a3bf80
    42 N7f11ae6e03224ada9697473786ccb695
    43 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002416399
    44 https://doi.org/10.1007/bf01189025
    45 schema:sdDatePublished 2022-10-01T06:29
    46 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    47 schema:sdPublisher Nd8a0f9acee23438799be941462b15ece
    48 schema:url https://doi.org/10.1007/bf01189025
    49 sgo:license sg:explorer/license/
    50 sgo:sdDataset articles
    51 rdf:type schema:ScholarlyArticle
    52 N0cd6fe2405964b77baad3036e8a3bf80 schema:name doi
    53 schema:value 10.1007/bf01189025
    54 rdf:type schema:PropertyValue
    55 N4b59cf54162d462985306df15ed0e05d schema:issueNumber 1
    56 rdf:type schema:PublicationIssue
    57 N6241b88bd6454acc819e1ea753e6224c rdf:first sg:person.010344544767.07
    58 rdf:rest rdf:nil
    59 N7f11ae6e03224ada9697473786ccb695 schema:name dimensions_id
    60 schema:value pub.1002416399
    61 rdf:type schema:PropertyValue
    62 N8f40174b952a4ea7a1322a59ecd50a7b schema:volumeNumber 3
    63 rdf:type schema:PublicationVolume
    64 Nd172f08d0296472585be977e5a58a6f2 rdf:first sg:person.012711653371.43
    65 rdf:rest N6241b88bd6454acc819e1ea753e6224c
    66 Nd8a0f9acee23438799be941462b15ece schema:name Springer Nature - SN SciGraph project
    67 rdf:type schema:Organization
    68 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    69 schema:name Mathematical Sciences
    70 rdf:type schema:DefinedTerm
    71 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    72 schema:name Pure Mathematics
    73 rdf:type schema:DefinedTerm
    74 sg:journal.1136287 schema:issn 0938-1279
    75 1432-0622
    76 schema:name Applicable Algebra in Engineering, Communication and Computing
    77 schema:publisher Springer Nature
    78 rdf:type schema:Periodical
    79 sg:person.010344544767.07 schema:affiliation grid-institutes:grid.46078.3d
    80 schema:familyName Vanstone
    81 schema:givenName Scott A.
    82 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010344544767.07
    83 rdf:type schema:Person
    84 sg:person.012711653371.43 schema:affiliation grid-institutes:grid.46078.3d
    85 schema:familyName Menezes
    86 schema:givenName Alfred J.
    87 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012711653371.43
    88 rdf:type schema:Person
    89 sg:pub.10.1007/3-540-39757-4_20 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050029692
    90 https://doi.org/10.1007/3-540-39757-4_20
    91 rdf:type schema:CreativeWork
    92 sg:pub.10.1007/978-1-4757-1920-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017153141
    93 https://doi.org/10.1007/978-1-4757-1920-8
    94 rdf:type schema:CreativeWork
    95 sg:pub.10.1007/978-1-4757-5119-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030858724
    96 https://doi.org/10.1007/978-1-4757-5119-2
    97 rdf:type schema:CreativeWork
    98 sg:pub.10.1007/bf01840433 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024039582
    99 https://doi.org/10.1007/bf01840433
    100 rdf:type schema:CreativeWork
    101 sg:pub.10.1007/bf02252872 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008777174
    102 https://doi.org/10.1007/bf02252872
    103 rdf:type schema:CreativeWork
    104 sg:pub.10.1007/bf02351719 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025449195
    105 https://doi.org/10.1007/bf02351719
    106 rdf:type schema:CreativeWork
    107 grid-institutes:grid.46078.3d schema:alternateName Department of Combinatorics and Optimization, University of Waterloo, N2L 3G1, Waterloo, Ontario, Canada
    108 schema:name Department of Combinatorics and Optimization, University of Waterloo, N2L 3G1, Waterloo, Ontario, Canada
    109 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...