Value function and optimality condition for semilinear control problems. II: Parabolic case View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1996-01

AUTHORS

P. Cannarsa, H. Frankowska

ABSTRACT

In this paper we continue to study properties of the value function and of optimal solutions of a semilinear Mayer problem in infinite dimensions. Applications concern systems governed by a state equation of parabolic type. In particular, the issues of the joint Lipschitz continuity and semiconcavity of the value function are treated in order to investigate the differentiability of the value function along optimal trajectories. More... »

PAGES

1-33

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf01187960

DOI

http://dx.doi.org/10.1007/bf01187960

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1033394422


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Rome Tor Vergata", 
          "id": "https://www.grid.ac/institutes/grid.6530.0", 
          "name": [
            "Dipartimento di Matematica, Universit\u00e0 di Roma \u201cTor Vergata,\u201d Via della Ricerca Scientifica, 00133, Roma, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cannarsa", 
        "givenName": "P.", 
        "id": "sg:person.014257010655.09", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014257010655.09"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "French National Centre for Scientific Research", 
          "id": "https://www.grid.ac/institutes/grid.4444.0", 
          "name": [
            "CNRS, CEREMADE Universit\u00e9 Paris-Dauphine, 75775, Paris Cedex 16, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Frankowska", 
        "givenName": "H.", 
        "id": "sg:person.011352240731.80", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011352240731.80"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1090/s0002-9947-1984-0732102-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009454689"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01189028", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010243393", 
          "https://doi.org/10.1007/bf01189028"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01189028", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010243393", 
          "https://doi.org/10.1007/bf01189028"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-1236(90)90147-d", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022549597"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bfb0005157", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023715555", 
          "https://doi.org/10.1007/bfb0005157"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01102352", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024455157", 
          "https://doi.org/10.1007/bf01102352"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01102352", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024455157", 
          "https://doi.org/10.1007/bf01102352"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bfb0006688", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030439664", 
          "https://doi.org/10.1007/bfb0006688"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/s0002-9947-1983-0690039-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031839902"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4612-5561-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042930842", 
          "https://doi.org/10.1007/978-1-4612-5561-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4612-5561-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042930842", 
          "https://doi.org/10.1007/978-1-4612-5561-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-0396(69)90091-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050454127"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-1236(90)90084-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054544527"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-1236(92)90081-s", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054544532"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-247x(92)90256-d", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054544584"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/0324030", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062843874"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/0324032", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062843876"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/0329068", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062844322"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1996-01", 
    "datePublishedReg": "1996-01-01", 
    "description": "In this paper we continue to study properties of the value function and of optimal solutions of a semilinear Mayer problem in infinite dimensions. Applications concern systems governed by a state equation of parabolic type. In particular, the issues of the joint Lipschitz continuity and semiconcavity of the value function are treated in order to investigate the differentiability of the value function along optimal trajectories.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf01187960", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1120592", 
        "issn": [
          "0095-4616", 
          "1432-0606"
        ], 
        "name": "Applied Mathematics & Optimization", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "33"
      }
    ], 
    "name": "Value function and optimality condition for semilinear control problems. II: Parabolic case", 
    "pagination": "1-33", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "9f1598d610cb67b47a3712c04f8223f09d6cf0c7e1c84dcb339b7e2ff04802b4"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf01187960"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1033394422"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf01187960", 
      "https://app.dimensions.ai/details/publication/pub.1033394422"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:32", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000370_0000000370/records_46765_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/BF01187960"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01187960'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01187960'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01187960'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01187960'


 

This table displays all metadata directly associated to this object as RDF triples.

121 TRIPLES      21 PREDICATES      42 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf01187960 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N99c7fb10d129450c9e46c4336c43cf13
4 schema:citation sg:pub.10.1007/978-1-4612-5561-1
5 sg:pub.10.1007/bf01102352
6 sg:pub.10.1007/bf01189028
7 sg:pub.10.1007/bfb0005157
8 sg:pub.10.1007/bfb0006688
9 https://doi.org/10.1016/0022-0396(69)90091-6
10 https://doi.org/10.1016/0022-1236(90)90084-x
11 https://doi.org/10.1016/0022-1236(90)90147-d
12 https://doi.org/10.1016/0022-1236(92)90081-s
13 https://doi.org/10.1016/0022-247x(92)90256-d
14 https://doi.org/10.1090/s0002-9947-1983-0690039-8
15 https://doi.org/10.1090/s0002-9947-1984-0732102-x
16 https://doi.org/10.1137/0324030
17 https://doi.org/10.1137/0324032
18 https://doi.org/10.1137/0329068
19 schema:datePublished 1996-01
20 schema:datePublishedReg 1996-01-01
21 schema:description In this paper we continue to study properties of the value function and of optimal solutions of a semilinear Mayer problem in infinite dimensions. Applications concern systems governed by a state equation of parabolic type. In particular, the issues of the joint Lipschitz continuity and semiconcavity of the value function are treated in order to investigate the differentiability of the value function along optimal trajectories.
22 schema:genre research_article
23 schema:inLanguage en
24 schema:isAccessibleForFree false
25 schema:isPartOf N4c4359acbd1c4ad5be07bc66e4e83471
26 N608202a0a157479ab5332b9f0b8aaede
27 sg:journal.1120592
28 schema:name Value function and optimality condition for semilinear control problems. II: Parabolic case
29 schema:pagination 1-33
30 schema:productId N99d03712fdaf417fb8e3f6e311915f4f
31 Ncc48024c6e974a10a02bdd852b7e9021
32 Nfaa73c6943bc4577a452a88e69776174
33 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033394422
34 https://doi.org/10.1007/bf01187960
35 schema:sdDatePublished 2019-04-11T13:32
36 schema:sdLicense https://scigraph.springernature.com/explorer/license/
37 schema:sdPublisher N57bd72ac8e504bf492293f2bc4ef686f
38 schema:url http://link.springer.com/10.1007/BF01187960
39 sgo:license sg:explorer/license/
40 sgo:sdDataset articles
41 rdf:type schema:ScholarlyArticle
42 N4c4359acbd1c4ad5be07bc66e4e83471 schema:issueNumber 1
43 rdf:type schema:PublicationIssue
44 N57bd72ac8e504bf492293f2bc4ef686f schema:name Springer Nature - SN SciGraph project
45 rdf:type schema:Organization
46 N608202a0a157479ab5332b9f0b8aaede schema:volumeNumber 33
47 rdf:type schema:PublicationVolume
48 N6e9e6f234d304e13b3979d1fef9a7062 rdf:first sg:person.011352240731.80
49 rdf:rest rdf:nil
50 N99c7fb10d129450c9e46c4336c43cf13 rdf:first sg:person.014257010655.09
51 rdf:rest N6e9e6f234d304e13b3979d1fef9a7062
52 N99d03712fdaf417fb8e3f6e311915f4f schema:name dimensions_id
53 schema:value pub.1033394422
54 rdf:type schema:PropertyValue
55 Ncc48024c6e974a10a02bdd852b7e9021 schema:name readcube_id
56 schema:value 9f1598d610cb67b47a3712c04f8223f09d6cf0c7e1c84dcb339b7e2ff04802b4
57 rdf:type schema:PropertyValue
58 Nfaa73c6943bc4577a452a88e69776174 schema:name doi
59 schema:value 10.1007/bf01187960
60 rdf:type schema:PropertyValue
61 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
62 schema:name Mathematical Sciences
63 rdf:type schema:DefinedTerm
64 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
65 schema:name Pure Mathematics
66 rdf:type schema:DefinedTerm
67 sg:journal.1120592 schema:issn 0095-4616
68 1432-0606
69 schema:name Applied Mathematics & Optimization
70 rdf:type schema:Periodical
71 sg:person.011352240731.80 schema:affiliation https://www.grid.ac/institutes/grid.4444.0
72 schema:familyName Frankowska
73 schema:givenName H.
74 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011352240731.80
75 rdf:type schema:Person
76 sg:person.014257010655.09 schema:affiliation https://www.grid.ac/institutes/grid.6530.0
77 schema:familyName Cannarsa
78 schema:givenName P.
79 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014257010655.09
80 rdf:type schema:Person
81 sg:pub.10.1007/978-1-4612-5561-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042930842
82 https://doi.org/10.1007/978-1-4612-5561-1
83 rdf:type schema:CreativeWork
84 sg:pub.10.1007/bf01102352 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024455157
85 https://doi.org/10.1007/bf01102352
86 rdf:type schema:CreativeWork
87 sg:pub.10.1007/bf01189028 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010243393
88 https://doi.org/10.1007/bf01189028
89 rdf:type schema:CreativeWork
90 sg:pub.10.1007/bfb0005157 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023715555
91 https://doi.org/10.1007/bfb0005157
92 rdf:type schema:CreativeWork
93 sg:pub.10.1007/bfb0006688 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030439664
94 https://doi.org/10.1007/bfb0006688
95 rdf:type schema:CreativeWork
96 https://doi.org/10.1016/0022-0396(69)90091-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050454127
97 rdf:type schema:CreativeWork
98 https://doi.org/10.1016/0022-1236(90)90084-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1054544527
99 rdf:type schema:CreativeWork
100 https://doi.org/10.1016/0022-1236(90)90147-d schema:sameAs https://app.dimensions.ai/details/publication/pub.1022549597
101 rdf:type schema:CreativeWork
102 https://doi.org/10.1016/0022-1236(92)90081-s schema:sameAs https://app.dimensions.ai/details/publication/pub.1054544532
103 rdf:type schema:CreativeWork
104 https://doi.org/10.1016/0022-247x(92)90256-d schema:sameAs https://app.dimensions.ai/details/publication/pub.1054544584
105 rdf:type schema:CreativeWork
106 https://doi.org/10.1090/s0002-9947-1983-0690039-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031839902
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1090/s0002-9947-1984-0732102-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1009454689
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1137/0324030 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062843874
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1137/0324032 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062843876
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1137/0329068 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062844322
115 rdf:type schema:CreativeWork
116 https://www.grid.ac/institutes/grid.4444.0 schema:alternateName French National Centre for Scientific Research
117 schema:name CNRS, CEREMADE Université Paris-Dauphine, 75775, Paris Cedex 16, France
118 rdf:type schema:Organization
119 https://www.grid.ac/institutes/grid.6530.0 schema:alternateName University of Rome Tor Vergata
120 schema:name Dipartimento di Matematica, Università di Roma “Tor Vergata,” Via della Ricerca Scientifica, 00133, Roma, Italy
121 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...