A correlation study of averaged and single trial MEG signals: The average describes multiple histories each in a different set ... View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1996-06

AUTHORS

Lichan Liu, Andreas A. Ioannides

ABSTRACT

Our understanding of the link between electrical events in the brain and behaviour is based on indirect measures. Positron Emission Tomography (PET) and functional Magnetic Resonance Imaging (fMRI) rely on haemodynamic processes which are slower by two to three orders of magnitude than the processes characterizing normal and pathological brain function. Direct invasive measurements of the electrical activity on the other hand produce too local a view which fails to show the large scale coherence which sustains awareness and cognition. On the opposite extreme, gross measures of the electrical activity like Electroencephalography (EEG) and single or few channel Magetoencephalography (MEG) had until recently to rely on simplistic point like models extracted from the averages of many repetitions of physiologically irrelevant stimuli. The introduction of multichannel probes with over 30 channels (Hämälainen et al. 1993), and the use of distributed source analysis (Ioannides et al. 1990a) opened up for the first time the possibility to study the response of single trials. In this work we address directly the question how representative is the description of events extracted from the analysis of the average signal. We use the simplest possible example: the cortical response to a simple 1 kHz tone, focusing on the early and by general admission "automatic" response around 100 ms after stimulus onset. To avoid the confounding inter-subject variability we have studied the responses over the left and right cortical areas to ipsi- and contralateral stimulation in a single subject; for testing reproducibility, we have used both the eyes open and eyes closed conditions. Since the computational demands involved in extracting a full three dimensional description from each trial are too great, we have complemented the distributed source analysis with special techniques, which allow us to scan through each and every single trial and identify each cortical activation similar to the ones picked out in the average signal. We are thus able to show conclusively that the sequence of events suggested by the analysis of the average signal is not representative of what is happening in individual trials. The sequence is made up of events which occurred in different trials reflecting probably the existence of many parallel routes each of which leads from the input at the ear to a final "computation". More... »

PAGES

385-396

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf01186914

DOI

http://dx.doi.org/10.1007/bf01186914

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1016005395

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/8813418


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1109", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Neurosciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adult", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Evoked Potentials, Auditory", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Magnetoencephalography", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Signal Processing, Computer-Assisted", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "The Open University", 
          "id": "https://www.grid.ac/institutes/grid.10837.3d", 
          "name": [
            "Department of Physics, The Open University, Milton Keynes, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liu", 
        "givenName": "Lichan", 
        "id": "sg:person.01052261460.51", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01052261460.51"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "The Open University", 
          "id": "https://www.grid.ac/institutes/grid.10837.3d", 
          "name": [
            "Department of Physics, The Open University, Milton Keynes, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ioannides", 
        "givenName": "Andreas A.", 
        "id": "sg:person.0600434417.84", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0600434417.84"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/373515a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000239821", 
          "https://doi.org/10.1038/373515a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0168-5597(94)90104-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001928749"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0168-5597(94)90104-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001928749"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/364059a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007468655", 
          "https://doi.org/10.1038/364059a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0168-5597(94)90022-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007663254"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0168-5597(94)90022-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007663254"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0074-7742(08)60246-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007792647"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0022-0736(76)80043-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009113955"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0028-3932(68)90035-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009867967"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0013-4694(75)90056-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009976371"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0013-4694(75)90056-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009976371"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-85148-3_14", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010229491", 
          "https://doi.org/10.1007/978-3-642-85148-3_14"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00004691-199509010-00003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012736865"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00004691-199509010-00003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012736865"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0013-4694(95)98480-v", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012848857"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-74557-7_5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014821609", 
          "https://doi.org/10.1007/978-3-642-74557-7_5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.91.24.11748", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022446840"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.88.24.11037", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031262059"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00001756-199512290-00004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031561441"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00001756-199512290-00004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031561441"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01234124", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031785008", 
          "https://doi.org/10.1007/bf01234124"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1113/jphysiol.1962.sp006837", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037811822"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.90.5.2078", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037889194"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0167-8760(95)00031-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040736998"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0306-4522(91)90075-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041195884"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0306-4522(91)90075-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041195884"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0266-5611/6/4/005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041998952"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0304-3940(94)90431-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044364457"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0304-3940(94)90431-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044364457"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1117/12.23657", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044660324"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.92.5.1689", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048632039"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/hipo.450030307", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049718719"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/hipo.450030307", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049718719"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0031-9155/30/10/009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059021262"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0967-3334/14/2/003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059121938"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.65.413", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060839289"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.65.413", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060839289"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/10.256428", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061084337"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.7761855", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062649194"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/ajplegacy.1961.200.1.23", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1075947429"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1523/jneurosci.04-08-02051.1984", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1081763855"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/jn.1995.74.1.96", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1082374915"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1082449052", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/9789814503822_0013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1088756831"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1996-06", 
    "datePublishedReg": "1996-06-01", 
    "description": "Our understanding of the link between electrical events in the brain and behaviour is based on indirect measures. Positron Emission Tomography (PET) and functional Magnetic Resonance Imaging (fMRI) rely on haemodynamic processes which are slower by two to three orders of magnitude than the processes characterizing normal and pathological brain function. Direct invasive measurements of the electrical activity on the other hand produce too local a view which fails to show the large scale coherence which sustains awareness and cognition. On the opposite extreme, gross measures of the electrical activity like Electroencephalography (EEG) and single or few channel Magetoencephalography (MEG) had until recently to rely on simplistic point like models extracted from the averages of many repetitions of physiologically irrelevant stimuli. The introduction of multichannel probes with over 30 channels (H\u00e4m\u00e4lainen et al. 1993), and the use of distributed source analysis (Ioannides et al. 1990a) opened up for the first time the possibility to study the response of single trials. In this work we address directly the question how representative is the description of events extracted from the analysis of the average signal. We use the simplest possible example: the cortical response to a simple 1 kHz tone, focusing on the early and by general admission \"automatic\" response around 100 ms after stimulus onset. To avoid the confounding inter-subject variability we have studied the responses over the left and right cortical areas to ipsi- and contralateral stimulation in a single subject; for testing reproducibility, we have used both the eyes open and eyes closed conditions. Since the computational demands involved in extracting a full three dimensional description from each trial are too great, we have complemented the distributed source analysis with special techniques, which allow us to scan through each and every single trial and identify each cortical activation similar to the ones picked out in the average signal. We are thus able to show conclusively that the sequence of events suggested by the analysis of the average signal is not representative of what is happening in individual trials. The sequence is made up of events which occurred in different trials reflecting probably the existence of many parallel routes each of which leads from the input at the ear to a final \"computation\".", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf01186914", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1098975", 
        "issn": [
          "0896-0267", 
          "1573-6792"
        ], 
        "name": "Brain Topography", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "8"
      }
    ], 
    "name": "A correlation study of averaged and single trial MEG signals: The average describes multiple histories each in a different set of single trials", 
    "pagination": "385-396", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "4c430ba238fc918268dd93b99fd4dfcc3908b7787ddeab0d19b8f07d353a8281"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "8813418"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "8903034"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf01186914"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1016005395"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf01186914", 
      "https://app.dimensions.ai/details/publication/pub.1016005395"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:33", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000370_0000000370/records_46766_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/BF01186914"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01186914'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01186914'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01186914'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01186914'


 

This table displays all metadata directly associated to this object as RDF triples.

209 TRIPLES      21 PREDICATES      70 URIs      27 LITERALS      15 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf01186914 schema:about N0d3fd42571e94cef9c4cf6b1ec6af1c4
2 N14d945162c7048c9a794e0e07192b918
3 N93a8af1b3d20414d8b83f05968853e5c
4 Nb540663e7e06480a924633e96005e96a
5 Ndc59080e071047159d9976ca19eae716
6 Nec608a578a934eeca630f954a24f7442
7 anzsrc-for:11
8 anzsrc-for:1109
9 schema:author N6ce9889aa48a44f1acb2c63682bf057e
10 schema:citation sg:pub.10.1007/978-3-642-74557-7_5
11 sg:pub.10.1007/978-3-642-85148-3_14
12 sg:pub.10.1007/bf01234124
13 sg:pub.10.1038/364059a0
14 sg:pub.10.1038/373515a0
15 https://app.dimensions.ai/details/publication/pub.1082449052
16 https://doi.org/10.1002/hipo.450030307
17 https://doi.org/10.1016/0013-4694(75)90056-5
18 https://doi.org/10.1016/0013-4694(95)98480-v
19 https://doi.org/10.1016/0028-3932(68)90035-3
20 https://doi.org/10.1016/0167-8760(95)00031-3
21 https://doi.org/10.1016/0168-5597(94)90022-1
22 https://doi.org/10.1016/0168-5597(94)90104-x
23 https://doi.org/10.1016/0304-3940(94)90431-6
24 https://doi.org/10.1016/0306-4522(91)90075-y
25 https://doi.org/10.1016/s0022-0736(76)80043-x
26 https://doi.org/10.1016/s0074-7742(08)60246-9
27 https://doi.org/10.1073/pnas.88.24.11037
28 https://doi.org/10.1073/pnas.90.5.2078
29 https://doi.org/10.1073/pnas.91.24.11748
30 https://doi.org/10.1073/pnas.92.5.1689
31 https://doi.org/10.1088/0031-9155/30/10/009
32 https://doi.org/10.1088/0266-5611/6/4/005
33 https://doi.org/10.1088/0967-3334/14/2/003
34 https://doi.org/10.1097/00001756-199512290-00004
35 https://doi.org/10.1097/00004691-199509010-00003
36 https://doi.org/10.1103/revmodphys.65.413
37 https://doi.org/10.1109/10.256428
38 https://doi.org/10.1113/jphysiol.1962.sp006837
39 https://doi.org/10.1117/12.23657
40 https://doi.org/10.1126/science.7761855
41 https://doi.org/10.1142/9789814503822_0013
42 https://doi.org/10.1152/ajplegacy.1961.200.1.23
43 https://doi.org/10.1152/jn.1995.74.1.96
44 https://doi.org/10.1523/jneurosci.04-08-02051.1984
45 schema:datePublished 1996-06
46 schema:datePublishedReg 1996-06-01
47 schema:description Our understanding of the link between electrical events in the brain and behaviour is based on indirect measures. Positron Emission Tomography (PET) and functional Magnetic Resonance Imaging (fMRI) rely on haemodynamic processes which are slower by two to three orders of magnitude than the processes characterizing normal and pathological brain function. Direct invasive measurements of the electrical activity on the other hand produce too local a view which fails to show the large scale coherence which sustains awareness and cognition. On the opposite extreme, gross measures of the electrical activity like Electroencephalography (EEG) and single or few channel Magetoencephalography (MEG) had until recently to rely on simplistic point like models extracted from the averages of many repetitions of physiologically irrelevant stimuli. The introduction of multichannel probes with over 30 channels (Hämälainen et al. 1993), and the use of distributed source analysis (Ioannides et al. 1990a) opened up for the first time the possibility to study the response of single trials. In this work we address directly the question how representative is the description of events extracted from the analysis of the average signal. We use the simplest possible example: the cortical response to a simple 1 kHz tone, focusing on the early and by general admission "automatic" response around 100 ms after stimulus onset. To avoid the confounding inter-subject variability we have studied the responses over the left and right cortical areas to ipsi- and contralateral stimulation in a single subject; for testing reproducibility, we have used both the eyes open and eyes closed conditions. Since the computational demands involved in extracting a full three dimensional description from each trial are too great, we have complemented the distributed source analysis with special techniques, which allow us to scan through each and every single trial and identify each cortical activation similar to the ones picked out in the average signal. We are thus able to show conclusively that the sequence of events suggested by the analysis of the average signal is not representative of what is happening in individual trials. The sequence is made up of events which occurred in different trials reflecting probably the existence of many parallel routes each of which leads from the input at the ear to a final "computation".
48 schema:genre research_article
49 schema:inLanguage en
50 schema:isAccessibleForFree false
51 schema:isPartOf N56538fef830c4e76893c7444d46e6627
52 N8b3a893d0668456593e5ca02567b2a8f
53 sg:journal.1098975
54 schema:name A correlation study of averaged and single trial MEG signals: The average describes multiple histories each in a different set of single trials
55 schema:pagination 385-396
56 schema:productId N0c5523749c2f40d79d5f255943a20fc4
57 N76fe7be87339475b8c763d3a773e4ec1
58 Na8baae372d4b4da293fe8df1eca27a5c
59 Nacd51b71f6a94cc39be8aa96aba97bd2
60 Nc2520ac3d49d44119883664dd82e760c
61 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016005395
62 https://doi.org/10.1007/bf01186914
63 schema:sdDatePublished 2019-04-11T13:33
64 schema:sdLicense https://scigraph.springernature.com/explorer/license/
65 schema:sdPublisher Nebd5e15947e3490f9d491ba57adabe40
66 schema:url http://link.springer.com/10.1007/BF01186914
67 sgo:license sg:explorer/license/
68 sgo:sdDataset articles
69 rdf:type schema:ScholarlyArticle
70 N0c5523749c2f40d79d5f255943a20fc4 schema:name doi
71 schema:value 10.1007/bf01186914
72 rdf:type schema:PropertyValue
73 N0d3fd42571e94cef9c4cf6b1ec6af1c4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
74 schema:name Evoked Potentials, Auditory
75 rdf:type schema:DefinedTerm
76 N14d945162c7048c9a794e0e07192b918 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
77 schema:name Signal Processing, Computer-Assisted
78 rdf:type schema:DefinedTerm
79 N56538fef830c4e76893c7444d46e6627 schema:issueNumber 4
80 rdf:type schema:PublicationIssue
81 N66e204c202e5429096f9275a9a592d19 rdf:first sg:person.0600434417.84
82 rdf:rest rdf:nil
83 N6ce9889aa48a44f1acb2c63682bf057e rdf:first sg:person.01052261460.51
84 rdf:rest N66e204c202e5429096f9275a9a592d19
85 N76fe7be87339475b8c763d3a773e4ec1 schema:name dimensions_id
86 schema:value pub.1016005395
87 rdf:type schema:PropertyValue
88 N8b3a893d0668456593e5ca02567b2a8f schema:volumeNumber 8
89 rdf:type schema:PublicationVolume
90 N93a8af1b3d20414d8b83f05968853e5c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
91 schema:name Magnetoencephalography
92 rdf:type schema:DefinedTerm
93 Na8baae372d4b4da293fe8df1eca27a5c schema:name readcube_id
94 schema:value 4c430ba238fc918268dd93b99fd4dfcc3908b7787ddeab0d19b8f07d353a8281
95 rdf:type schema:PropertyValue
96 Nacd51b71f6a94cc39be8aa96aba97bd2 schema:name nlm_unique_id
97 schema:value 8903034
98 rdf:type schema:PropertyValue
99 Nb540663e7e06480a924633e96005e96a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
100 schema:name Humans
101 rdf:type schema:DefinedTerm
102 Nc2520ac3d49d44119883664dd82e760c schema:name pubmed_id
103 schema:value 8813418
104 rdf:type schema:PropertyValue
105 Ndc59080e071047159d9976ca19eae716 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
106 schema:name Male
107 rdf:type schema:DefinedTerm
108 Nebd5e15947e3490f9d491ba57adabe40 schema:name Springer Nature - SN SciGraph project
109 rdf:type schema:Organization
110 Nec608a578a934eeca630f954a24f7442 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
111 schema:name Adult
112 rdf:type schema:DefinedTerm
113 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
114 schema:name Medical and Health Sciences
115 rdf:type schema:DefinedTerm
116 anzsrc-for:1109 schema:inDefinedTermSet anzsrc-for:
117 schema:name Neurosciences
118 rdf:type schema:DefinedTerm
119 sg:journal.1098975 schema:issn 0896-0267
120 1573-6792
121 schema:name Brain Topography
122 rdf:type schema:Periodical
123 sg:person.01052261460.51 schema:affiliation https://www.grid.ac/institutes/grid.10837.3d
124 schema:familyName Liu
125 schema:givenName Lichan
126 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01052261460.51
127 rdf:type schema:Person
128 sg:person.0600434417.84 schema:affiliation https://www.grid.ac/institutes/grid.10837.3d
129 schema:familyName Ioannides
130 schema:givenName Andreas A.
131 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0600434417.84
132 rdf:type schema:Person
133 sg:pub.10.1007/978-3-642-74557-7_5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014821609
134 https://doi.org/10.1007/978-3-642-74557-7_5
135 rdf:type schema:CreativeWork
136 sg:pub.10.1007/978-3-642-85148-3_14 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010229491
137 https://doi.org/10.1007/978-3-642-85148-3_14
138 rdf:type schema:CreativeWork
139 sg:pub.10.1007/bf01234124 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031785008
140 https://doi.org/10.1007/bf01234124
141 rdf:type schema:CreativeWork
142 sg:pub.10.1038/364059a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007468655
143 https://doi.org/10.1038/364059a0
144 rdf:type schema:CreativeWork
145 sg:pub.10.1038/373515a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000239821
146 https://doi.org/10.1038/373515a0
147 rdf:type schema:CreativeWork
148 https://app.dimensions.ai/details/publication/pub.1082449052 schema:CreativeWork
149 https://doi.org/10.1002/hipo.450030307 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049718719
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1016/0013-4694(75)90056-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009976371
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1016/0013-4694(95)98480-v schema:sameAs https://app.dimensions.ai/details/publication/pub.1012848857
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1016/0028-3932(68)90035-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009867967
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1016/0167-8760(95)00031-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040736998
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1016/0168-5597(94)90022-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007663254
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1016/0168-5597(94)90104-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1001928749
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1016/0304-3940(94)90431-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044364457
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1016/0306-4522(91)90075-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1041195884
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1016/s0022-0736(76)80043-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1009113955
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1016/s0074-7742(08)60246-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007792647
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1073/pnas.88.24.11037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031262059
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1073/pnas.90.5.2078 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037889194
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1073/pnas.91.24.11748 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022446840
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1073/pnas.92.5.1689 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048632039
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1088/0031-9155/30/10/009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059021262
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1088/0266-5611/6/4/005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041998952
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1088/0967-3334/14/2/003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059121938
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1097/00001756-199512290-00004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031561441
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1097/00004691-199509010-00003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012736865
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1103/revmodphys.65.413 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060839289
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1109/10.256428 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061084337
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1113/jphysiol.1962.sp006837 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037811822
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1117/12.23657 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044660324
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1126/science.7761855 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062649194
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1142/9789814503822_0013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1088756831
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1152/ajplegacy.1961.200.1.23 schema:sameAs https://app.dimensions.ai/details/publication/pub.1075947429
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1152/jn.1995.74.1.96 schema:sameAs https://app.dimensions.ai/details/publication/pub.1082374915
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1523/jneurosci.04-08-02051.1984 schema:sameAs https://app.dimensions.ai/details/publication/pub.1081763855
206 rdf:type schema:CreativeWork
207 https://www.grid.ac/institutes/grid.10837.3d schema:alternateName The Open University
208 schema:name Department of Physics, The Open University, Milton Keynes, UK
209 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...