Boundary optimal control of MHD flows View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1995-09

AUTHORS

L. S. Hou, A. J. Meir

ABSTRACT

This paper deals with some optimal control problems associated with the equations of steady-state, incompressible magnetohydrodynamics. These problems have direct applications to nuclear reactor technology, magnetic propulsion devices, and design of electromagnetic pumps. These problems are first put into an appropriate mathematical formulation. Then the existence of optimal solutions is proved. The use of Lagrange multiplier techniques is justified and an optimality system of equations is derived. The theory is applied to an example. More... »

PAGES

143-162

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf01185228

DOI

http://dx.doi.org/10.1007/bf01185228

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1043499697


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Applied Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Numerical and Computational Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Mathematics and Statistics, Simon Fraser University, V5A 1S6, Burnaby, British Columbia, Canada", 
          "id": "http://www.grid.ac/institutes/grid.61971.38", 
          "name": [
            "Department of Mathematics and Statistics, Simon Fraser University, V5A 1S6, Burnaby, British Columbia, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hou", 
        "givenName": "L. S.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Foundations, Analysis and Topology, Auburn University, 36849, Auburn, AL, USA", 
          "id": "http://www.grid.ac/institutes/grid.252546.2", 
          "name": [
            "Department of Foundations, Analysis and Topology, Auburn University, 36849, Auburn, AL, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Meir", 
        "givenName": "A. J.", 
        "id": "sg:person.01202366534.74", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01202366534.74"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-3-642-66165-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051795203", 
          "https://doi.org/10.1007/978-3-642-66165-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-61623-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023597288", 
          "https://doi.org/10.1007/978-3-642-61623-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4612-4566-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053114197", 
          "https://doi.org/10.1007/978-1-4612-4566-7"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1995-09", 
    "datePublishedReg": "1995-09-01", 
    "description": "This paper deals with some optimal control problems associated with the equations of steady-state, incompressible magnetohydrodynamics. These problems have direct applications to nuclear reactor technology, magnetic propulsion devices, and design of electromagnetic pumps. These problems are first put into an appropriate mathematical formulation. Then the existence of optimal solutions is proved. The use of Lagrange multiplier techniques is justified and an optimality system of equations is derived. The theory is applied to an example.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/bf01185228", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1120592", 
        "issn": [
          "0095-4616", 
          "1432-0606"
        ], 
        "name": "Applied Mathematics & Optimization", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "32"
      }
    ], 
    "keywords": [
      "boundary optimal control", 
      "optimal control problem", 
      "Lagrange multiplier technique", 
      "appropriate mathematical formulation", 
      "optimality system", 
      "optimal control", 
      "control problem", 
      "mathematical formulation", 
      "optimal solution", 
      "incompressible magnetohydrodynamics", 
      "multiplier technique", 
      "equations", 
      "direct application", 
      "problem", 
      "nuclear reactor technology", 
      "magnetohydrodynamics", 
      "MHD", 
      "theory", 
      "formulation", 
      "solution", 
      "existence", 
      "electromagnetic pump", 
      "applications", 
      "system", 
      "propulsion devices", 
      "design", 
      "control", 
      "technique", 
      "reactor technology", 
      "use", 
      "pump", 
      "technology", 
      "devices", 
      "example", 
      "paper", 
      "magnetic propulsion devices"
    ], 
    "name": "Boundary optimal control of MHD flows", 
    "pagination": "143-162", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1043499697"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf01185228"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf01185228", 
      "https://app.dimensions.ai/details/publication/pub.1043499697"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T18:08", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_272.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/bf01185228"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01185228'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01185228'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01185228'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01185228'


 

This table displays all metadata directly associated to this object as RDF triples.

119 TRIPLES      22 PREDICATES      66 URIs      54 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf01185228 schema:about anzsrc-for:01
2 anzsrc-for:0102
3 anzsrc-for:0103
4 schema:author Ncb5aa5a4ddc4476ba245f83d0cc07adf
5 schema:citation sg:pub.10.1007/978-1-4612-4566-7
6 sg:pub.10.1007/978-3-642-61623-5
7 sg:pub.10.1007/978-3-642-66165-5
8 schema:datePublished 1995-09
9 schema:datePublishedReg 1995-09-01
10 schema:description This paper deals with some optimal control problems associated with the equations of steady-state, incompressible magnetohydrodynamics. These problems have direct applications to nuclear reactor technology, magnetic propulsion devices, and design of electromagnetic pumps. These problems are first put into an appropriate mathematical formulation. Then the existence of optimal solutions is proved. The use of Lagrange multiplier techniques is justified and an optimality system of equations is derived. The theory is applied to an example.
11 schema:genre article
12 schema:inLanguage en
13 schema:isAccessibleForFree false
14 schema:isPartOf Nf0a16087da5744e8b7389d9b8007e0bf
15 Nf3e62e539437444bb7ccb2ec8e567413
16 sg:journal.1120592
17 schema:keywords Lagrange multiplier technique
18 MHD
19 applications
20 appropriate mathematical formulation
21 boundary optimal control
22 control
23 control problem
24 design
25 devices
26 direct application
27 electromagnetic pump
28 equations
29 example
30 existence
31 formulation
32 incompressible magnetohydrodynamics
33 magnetic propulsion devices
34 magnetohydrodynamics
35 mathematical formulation
36 multiplier technique
37 nuclear reactor technology
38 optimal control
39 optimal control problem
40 optimal solution
41 optimality system
42 paper
43 problem
44 propulsion devices
45 pump
46 reactor technology
47 solution
48 system
49 technique
50 technology
51 theory
52 use
53 schema:name Boundary optimal control of MHD flows
54 schema:pagination 143-162
55 schema:productId N2e604d97072c4ceb90a6440a25e3bcf1
56 N6c3e4292335a4536b9e9f3c1c581d117
57 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043499697
58 https://doi.org/10.1007/bf01185228
59 schema:sdDatePublished 2022-01-01T18:08
60 schema:sdLicense https://scigraph.springernature.com/explorer/license/
61 schema:sdPublisher Nf7f90f68636d4a7db3a04e45879cd137
62 schema:url https://doi.org/10.1007/bf01185228
63 sgo:license sg:explorer/license/
64 sgo:sdDataset articles
65 rdf:type schema:ScholarlyArticle
66 N2e604d97072c4ceb90a6440a25e3bcf1 schema:name doi
67 schema:value 10.1007/bf01185228
68 rdf:type schema:PropertyValue
69 N432f17b0861e43caaff14c3e4e8a6a27 schema:affiliation grid-institutes:grid.61971.38
70 schema:familyName Hou
71 schema:givenName L. S.
72 rdf:type schema:Person
73 N52989103c21a492f84ab01645a86df36 rdf:first sg:person.01202366534.74
74 rdf:rest rdf:nil
75 N6c3e4292335a4536b9e9f3c1c581d117 schema:name dimensions_id
76 schema:value pub.1043499697
77 rdf:type schema:PropertyValue
78 Ncb5aa5a4ddc4476ba245f83d0cc07adf rdf:first N432f17b0861e43caaff14c3e4e8a6a27
79 rdf:rest N52989103c21a492f84ab01645a86df36
80 Nf0a16087da5744e8b7389d9b8007e0bf schema:volumeNumber 32
81 rdf:type schema:PublicationVolume
82 Nf3e62e539437444bb7ccb2ec8e567413 schema:issueNumber 2
83 rdf:type schema:PublicationIssue
84 Nf7f90f68636d4a7db3a04e45879cd137 schema:name Springer Nature - SN SciGraph project
85 rdf:type schema:Organization
86 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
87 schema:name Mathematical Sciences
88 rdf:type schema:DefinedTerm
89 anzsrc-for:0102 schema:inDefinedTermSet anzsrc-for:
90 schema:name Applied Mathematics
91 rdf:type schema:DefinedTerm
92 anzsrc-for:0103 schema:inDefinedTermSet anzsrc-for:
93 schema:name Numerical and Computational Mathematics
94 rdf:type schema:DefinedTerm
95 sg:journal.1120592 schema:issn 0095-4616
96 1432-0606
97 schema:name Applied Mathematics & Optimization
98 schema:publisher Springer Nature
99 rdf:type schema:Periodical
100 sg:person.01202366534.74 schema:affiliation grid-institutes:grid.252546.2
101 schema:familyName Meir
102 schema:givenName A. J.
103 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01202366534.74
104 rdf:type schema:Person
105 sg:pub.10.1007/978-1-4612-4566-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053114197
106 https://doi.org/10.1007/978-1-4612-4566-7
107 rdf:type schema:CreativeWork
108 sg:pub.10.1007/978-3-642-61623-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023597288
109 https://doi.org/10.1007/978-3-642-61623-5
110 rdf:type schema:CreativeWork
111 sg:pub.10.1007/978-3-642-66165-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051795203
112 https://doi.org/10.1007/978-3-642-66165-5
113 rdf:type schema:CreativeWork
114 grid-institutes:grid.252546.2 schema:alternateName Department of Foundations, Analysis and Topology, Auburn University, 36849, Auburn, AL, USA
115 schema:name Department of Foundations, Analysis and Topology, Auburn University, 36849, Auburn, AL, USA
116 rdf:type schema:Organization
117 grid-institutes:grid.61971.38 schema:alternateName Department of Mathematics and Statistics, Simon Fraser University, V5A 1S6, Burnaby, British Columbia, Canada
118 schema:name Department of Mathematics and Statistics, Simon Fraser University, V5A 1S6, Burnaby, British Columbia, Canada
119 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...