Local decay in time of solutions to Schrödinger's equation with a dilation-analytic interaction View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1978-03

AUTHORS

Arne Jensen

ABSTRACT

For a Schrödinger operator H=−Δ+V in L2(ℝ3 with a dilation-analytic potential V decaying as r−2−ε at infinity we prove that a scattering solution exp(-itH)f generically decays as t−3/2 for t→∞

PAGES

61-77

References to SciGraph publications

  • 1971-12. Spectral properties of many-body Schrödinger operators with dilatation-analytic interactions in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 1971-12. A class of analytic perturbations for one-body Schrödinger Hamiltonians in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 1971-01. Spectral and scattering theory for Schrödinger operators in ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS
  • 1974-06. Absence of positive eigenvalues in a class of multiparticle quantum systems in MATHEMATISCHE ANNALEN
  • 1975-12. Absence of positive eigenvalues of Schrödinger operators in ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS
  • 1970-12. Lower bounds for solutions of Schrödinger equations in JOURNAL D'ANALYSE MATHÉMATIQUE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/bf01170357

    DOI

    http://dx.doi.org/10.1007/bf01170357

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1017542898


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Mathematics, University of California, 94720, Berkeley, California, USA", 
              "id": "http://www.grid.ac/institutes/grid.47840.3f", 
              "name": [
                "Department of Mathematics, University of California, 94720, Berkeley, California, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Jensen", 
            "givenName": "Arne", 
            "id": "sg:person.015240561701.11", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015240561701.11"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf01877510", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043949968", 
              "https://doi.org/10.1007/bf01877510"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02795485", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019849073", 
              "https://doi.org/10.1007/bf02795485"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01362152", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049174409", 
              "https://doi.org/10.1007/bf01362152"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00250424", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053385663", 
              "https://doi.org/10.1007/bf00250424"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01877511", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043069953", 
              "https://doi.org/10.1007/bf01877511"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00252679", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034806576", 
              "https://doi.org/10.1007/bf00252679"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1978-03", 
        "datePublishedReg": "1978-03-01", 
        "description": "For a Schr\u00f6dinger operator H=\u2212\u0394+V in L2(\u211d3 with a dilation-analytic potential V decaying as r\u22122\u2212\u03b5 at infinity we prove that a scattering solution exp(-itH)f generically decays as t\u22123/2 for t\u2192\u221e", 
        "genre": "article", 
        "id": "sg:pub.10.1007/bf01170357", 
        "inLanguage": "en", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1136220", 
            "issn": [
              "0025-2611", 
              "1432-1785"
            ], 
            "name": "manuscripta mathematica", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "25"
          }
        ], 
        "keywords": [
          "Schr\u00f6dinger operators", 
          "operators"
        ], 
        "name": "Local decay in time of solutions to Schr\u00f6dinger's equation with a dilation-analytic interaction", 
        "pagination": "61-77", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1017542898"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/bf01170357"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/bf01170357", 
          "https://app.dimensions.ai/details/publication/pub.1017542898"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-01-01T17:59", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_108.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/bf01170357"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01170357'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01170357'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01170357'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01170357'


     

    This table displays all metadata directly associated to this object as RDF triples.

    84 TRIPLES      22 PREDICATES      34 URIs      20 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/bf01170357 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author N6fbe7770a0e247a39aa0d8d34af35287
    4 schema:citation sg:pub.10.1007/bf00250424
    5 sg:pub.10.1007/bf00252679
    6 sg:pub.10.1007/bf01362152
    7 sg:pub.10.1007/bf01877510
    8 sg:pub.10.1007/bf01877511
    9 sg:pub.10.1007/bf02795485
    10 schema:datePublished 1978-03
    11 schema:datePublishedReg 1978-03-01
    12 schema:description For a Schrödinger operator H=−Δ+V in L2(ℝ3 with a dilation-analytic potential V decaying as r−2−ε at infinity we prove that a scattering solution exp(-itH)f generically decays as t−3/2 for t→∞
    13 schema:genre article
    14 schema:inLanguage en
    15 schema:isAccessibleForFree false
    16 schema:isPartOf N13aee2e789c940629e9b264acf7a7e1e
    17 N7353285baadb451c8abade8b04a5d9c3
    18 sg:journal.1136220
    19 schema:keywords Schrödinger operators
    20 operators
    21 schema:name Local decay in time of solutions to Schrödinger's equation with a dilation-analytic interaction
    22 schema:pagination 61-77
    23 schema:productId N8b25b3613cb2416784ab3cba4b95d2a5
    24 Nd2f67bcae9844c36bf13b56d66e46acc
    25 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017542898
    26 https://doi.org/10.1007/bf01170357
    27 schema:sdDatePublished 2022-01-01T17:59
    28 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    29 schema:sdPublisher Nb46569662dcd4ab5a4ec40ffbf6cc207
    30 schema:url https://doi.org/10.1007/bf01170357
    31 sgo:license sg:explorer/license/
    32 sgo:sdDataset articles
    33 rdf:type schema:ScholarlyArticle
    34 N13aee2e789c940629e9b264acf7a7e1e schema:volumeNumber 25
    35 rdf:type schema:PublicationVolume
    36 N6fbe7770a0e247a39aa0d8d34af35287 rdf:first sg:person.015240561701.11
    37 rdf:rest rdf:nil
    38 N7353285baadb451c8abade8b04a5d9c3 schema:issueNumber 1
    39 rdf:type schema:PublicationIssue
    40 N8b25b3613cb2416784ab3cba4b95d2a5 schema:name dimensions_id
    41 schema:value pub.1017542898
    42 rdf:type schema:PropertyValue
    43 Nb46569662dcd4ab5a4ec40ffbf6cc207 schema:name Springer Nature - SN SciGraph project
    44 rdf:type schema:Organization
    45 Nd2f67bcae9844c36bf13b56d66e46acc schema:name doi
    46 schema:value 10.1007/bf01170357
    47 rdf:type schema:PropertyValue
    48 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    49 schema:name Mathematical Sciences
    50 rdf:type schema:DefinedTerm
    51 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    52 schema:name Pure Mathematics
    53 rdf:type schema:DefinedTerm
    54 sg:journal.1136220 schema:issn 0025-2611
    55 1432-1785
    56 schema:name manuscripta mathematica
    57 schema:publisher Springer Nature
    58 rdf:type schema:Periodical
    59 sg:person.015240561701.11 schema:affiliation grid-institutes:grid.47840.3f
    60 schema:familyName Jensen
    61 schema:givenName Arne
    62 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015240561701.11
    63 rdf:type schema:Person
    64 sg:pub.10.1007/bf00250424 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053385663
    65 https://doi.org/10.1007/bf00250424
    66 rdf:type schema:CreativeWork
    67 sg:pub.10.1007/bf00252679 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034806576
    68 https://doi.org/10.1007/bf00252679
    69 rdf:type schema:CreativeWork
    70 sg:pub.10.1007/bf01362152 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049174409
    71 https://doi.org/10.1007/bf01362152
    72 rdf:type schema:CreativeWork
    73 sg:pub.10.1007/bf01877510 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043949968
    74 https://doi.org/10.1007/bf01877510
    75 rdf:type schema:CreativeWork
    76 sg:pub.10.1007/bf01877511 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043069953
    77 https://doi.org/10.1007/bf01877511
    78 rdf:type schema:CreativeWork
    79 sg:pub.10.1007/bf02795485 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019849073
    80 https://doi.org/10.1007/bf02795485
    81 rdf:type schema:CreativeWork
    82 grid-institutes:grid.47840.3f schema:alternateName Department of Mathematics, University of California, 94720, Berkeley, California, USA
    83 schema:name Department of Mathematics, University of California, 94720, Berkeley, California, USA
    84 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...