Topological algebras of functions of bounded variation I View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1989-06

AUTHORS

Martin Blümlinger, Robert F. Tichy

ABSTRACT

A concept of generalized bounded variation for functions in s real variables is introduced. It is proved that the space of functions of this kind is a commutative Fréchet algebra with respect to pointwise multiplication. Several properties of this algebra are established.

PAGES

245-255

References to SciGraph publications

  • 1987-03. On some properties of functions of generalized variation in MONATSHEFTE FÜR MATHEMATIK
  • Journal

    TITLE

    manuscripta mathematica

    ISSUE

    2

    VOLUME

    65

    Author Affiliations

    Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/bf01168302

    DOI

    http://dx.doi.org/10.1007/bf01168302

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1004822467


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "author": [
          {
            "affiliation": {
              "alternateName": "TU Wien", 
              "id": "https://www.grid.ac/institutes/grid.5329.d", 
              "name": [
                "Institut f\u00fcr Analysis Technische Mathematik und Versicherungsmathematik, Technische Universit\u00e4t Wien, Wiedner Hauptstrasse 8-10, A-1040, Wien, Austria"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Bl\u00fcmlinger", 
            "givenName": "Martin", 
            "id": "sg:person.012047631507.87", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012047631507.87"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "TU Wien", 
              "id": "https://www.grid.ac/institutes/grid.5329.d", 
              "name": [
                "Institut f\u00fcr Analysis Technische Mathematik und Versicherungsmathematik, Technische Universit\u00e4t Wien, Wiedner Hauptstrasse 8-10, A-1040, Wien, Austria"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Tichy", 
            "givenName": "Robert F.", 
            "id": "sg:person.015312676677.43", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015312676677.43"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf01540525", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050271002", 
              "https://doi.org/10.1007/bf01540525"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01540525", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050271002", 
              "https://doi.org/10.1007/bf01540525"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.4064/sm-18-1-11-41", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091703089"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.4064/sm-18-1-49-65", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091703091"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.4064/sm-44-2-107-117", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091800410"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.4064/sm-45-1-71-109", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091815220"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.4064/sm-57-1-33-45", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091971039"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/00029890.1980.11994950", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1103221768"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1989-06", 
        "datePublishedReg": "1989-06-01", 
        "description": "A concept of generalized bounded variation for functions in s real variables is introduced. It is proved that the space of functions of this kind is a commutative Fr\u00e9chet algebra with respect to pointwise multiplication. Several properties of this algebra are established.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/bf01168302", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1136220", 
            "issn": [
              "0025-2611", 
              "1432-1785"
            ], 
            "name": "manuscripta mathematica", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "2", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "65"
          }
        ], 
        "name": "Topological algebras of functions of bounded variation I", 
        "pagination": "245-255", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "16fa81109dd663ff82d7a9c2c1b2ab6704ba46e50aefd49893ab5cd2d6b87783"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/bf01168302"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1004822467"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/bf01168302", 
          "https://app.dimensions.ai/details/publication/pub.1004822467"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T13:31", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000370_0000000370/records_46760_00000000.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007/BF01168302"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01168302'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01168302'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01168302'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01168302'


     

    This table displays all metadata directly associated to this object as RDF triples.

    82 TRIPLES      20 PREDICATES      32 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/bf01168302 schema:author N1a9e9765a724465e87168acf5b1fdfcf
    2 schema:citation sg:pub.10.1007/bf01540525
    3 https://doi.org/10.1080/00029890.1980.11994950
    4 https://doi.org/10.4064/sm-18-1-11-41
    5 https://doi.org/10.4064/sm-18-1-49-65
    6 https://doi.org/10.4064/sm-44-2-107-117
    7 https://doi.org/10.4064/sm-45-1-71-109
    8 https://doi.org/10.4064/sm-57-1-33-45
    9 schema:datePublished 1989-06
    10 schema:datePublishedReg 1989-06-01
    11 schema:description A concept of generalized bounded variation for functions in s real variables is introduced. It is proved that the space of functions of this kind is a commutative Fréchet algebra with respect to pointwise multiplication. Several properties of this algebra are established.
    12 schema:genre research_article
    13 schema:inLanguage en
    14 schema:isAccessibleForFree false
    15 schema:isPartOf N278a2987deab4c3ebcb0678305a04f12
    16 Nb8020c3b6b604ab6b6375cbd03e72e90
    17 sg:journal.1136220
    18 schema:name Topological algebras of functions of bounded variation I
    19 schema:pagination 245-255
    20 schema:productId N351ce3d626a04a9d9c71ab0e26946fe2
    21 N7d6dcc67c9834e7bbb355ff7973b2913
    22 Ne0c4ea9f5cf44b40b9e4ee455ea1548e
    23 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004822467
    24 https://doi.org/10.1007/bf01168302
    25 schema:sdDatePublished 2019-04-11T13:31
    26 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    27 schema:sdPublisher N3bb00933964a422e8fb61799df54386f
    28 schema:url http://link.springer.com/10.1007/BF01168302
    29 sgo:license sg:explorer/license/
    30 sgo:sdDataset articles
    31 rdf:type schema:ScholarlyArticle
    32 N1a9e9765a724465e87168acf5b1fdfcf rdf:first sg:person.012047631507.87
    33 rdf:rest N75f3f79c9d0b4bb48b27dfb067c01651
    34 N278a2987deab4c3ebcb0678305a04f12 schema:volumeNumber 65
    35 rdf:type schema:PublicationVolume
    36 N351ce3d626a04a9d9c71ab0e26946fe2 schema:name doi
    37 schema:value 10.1007/bf01168302
    38 rdf:type schema:PropertyValue
    39 N3bb00933964a422e8fb61799df54386f schema:name Springer Nature - SN SciGraph project
    40 rdf:type schema:Organization
    41 N75f3f79c9d0b4bb48b27dfb067c01651 rdf:first sg:person.015312676677.43
    42 rdf:rest rdf:nil
    43 N7d6dcc67c9834e7bbb355ff7973b2913 schema:name dimensions_id
    44 schema:value pub.1004822467
    45 rdf:type schema:PropertyValue
    46 Nb8020c3b6b604ab6b6375cbd03e72e90 schema:issueNumber 2
    47 rdf:type schema:PublicationIssue
    48 Ne0c4ea9f5cf44b40b9e4ee455ea1548e schema:name readcube_id
    49 schema:value 16fa81109dd663ff82d7a9c2c1b2ab6704ba46e50aefd49893ab5cd2d6b87783
    50 rdf:type schema:PropertyValue
    51 sg:journal.1136220 schema:issn 0025-2611
    52 1432-1785
    53 schema:name manuscripta mathematica
    54 rdf:type schema:Periodical
    55 sg:person.012047631507.87 schema:affiliation https://www.grid.ac/institutes/grid.5329.d
    56 schema:familyName Blümlinger
    57 schema:givenName Martin
    58 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012047631507.87
    59 rdf:type schema:Person
    60 sg:person.015312676677.43 schema:affiliation https://www.grid.ac/institutes/grid.5329.d
    61 schema:familyName Tichy
    62 schema:givenName Robert F.
    63 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015312676677.43
    64 rdf:type schema:Person
    65 sg:pub.10.1007/bf01540525 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050271002
    66 https://doi.org/10.1007/bf01540525
    67 rdf:type schema:CreativeWork
    68 https://doi.org/10.1080/00029890.1980.11994950 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103221768
    69 rdf:type schema:CreativeWork
    70 https://doi.org/10.4064/sm-18-1-11-41 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091703089
    71 rdf:type schema:CreativeWork
    72 https://doi.org/10.4064/sm-18-1-49-65 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091703091
    73 rdf:type schema:CreativeWork
    74 https://doi.org/10.4064/sm-44-2-107-117 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091800410
    75 rdf:type schema:CreativeWork
    76 https://doi.org/10.4064/sm-45-1-71-109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091815220
    77 rdf:type schema:CreativeWork
    78 https://doi.org/10.4064/sm-57-1-33-45 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091971039
    79 rdf:type schema:CreativeWork
    80 https://www.grid.ac/institutes/grid.5329.d schema:alternateName TU Wien
    81 schema:name Institut für Analysis Technische Mathematik und Versicherungsmathematik, Technische Universität Wien, Wiedner Hauptstrasse 8-10, A-1040, Wien, Austria
    82 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...