Vector valued Siegel's modular forms of degree two and the associated Andrianov L-functions View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1983-02

AUTHORS

Tsuneo Arakawa

ABSTRACT

In [1], [2], Andrianov constructed a remarkable Hecke theory for Siegel's modular forms of degree two. In this article we extend some of his results to the case of vector valued Siegel's modular forms of degree two.

PAGES

155-185

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf01166080

DOI

http://dx.doi.org/10.1007/bf01166080

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1044202764


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Mathematics, Rikkyo University, Nishi-Ikebukuro, 171, Tokyo, Japan", 
          "id": "http://www.grid.ac/institutes/grid.262564.1", 
          "name": [
            "Department of Mathematics, Rikkyo University, Nishi-Ikebukuro, 171, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Arakawa", 
        "givenName": "Tsuneo", 
        "id": "sg:person.014350752261.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014350752261.22"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf01110283", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036295699", 
          "https://doi.org/10.1007/bf01110283"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01594160", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006677281", 
          "https://doi.org/10.1007/bf01594160"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-38509-7_4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036262721", 
          "https://doi.org/10.1007/978-3-540-38509-7_4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bfb0079929", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013107563", 
          "https://doi.org/10.1007/bfb0079929"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01343553", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004295014", 
          "https://doi.org/10.1007/bf01343553"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1983-02", 
    "datePublishedReg": "1983-02-01", 
    "description": "In [1], [2], Andrianov constructed a remarkable Hecke theory for Siegel's modular forms of degree two. In this article we extend some of his results to the case of vector valued Siegel's modular forms of degree two.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/bf01166080", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136220", 
        "issn": [
          "0025-2611", 
          "1432-1785"
        ], 
        "name": "manuscripta mathematica", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1-3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "44"
      }
    ], 
    "keywords": [
      "theory", 
      "Siegel modular forms", 
      "modular forms", 
      "form", 
      "degree two", 
      "two", 
      "article", 
      "cases", 
      "Andrianov", 
      "remarkable Hecke theory", 
      "Hecke theory", 
      "results", 
      "case of vector", 
      "vector", 
      "associated Andrianov L", 
      "Andrianov L", 
      "function"
    ], 
    "name": "Vector valued Siegel's modular forms of degree two and the associated Andrianov L-functions", 
    "pagination": "155-185", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1044202764"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf01166080"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf01166080", 
      "https://app.dimensions.ai/details/publication/pub.1044202764"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-12-01T19:04", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_168.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/bf01166080"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01166080'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01166080'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01166080'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01166080'


 

This table displays all metadata directly associated to this object as RDF triples.

95 TRIPLES      22 PREDICATES      47 URIs      34 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf01166080 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N11d6d3e9eab44348830ab8690c5fbc20
4 schema:citation sg:pub.10.1007/978-3-540-38509-7_4
5 sg:pub.10.1007/bf01110283
6 sg:pub.10.1007/bf01343553
7 sg:pub.10.1007/bf01594160
8 sg:pub.10.1007/bfb0079929
9 schema:datePublished 1983-02
10 schema:datePublishedReg 1983-02-01
11 schema:description In [1], [2], Andrianov constructed a remarkable Hecke theory for Siegel's modular forms of degree two. In this article we extend some of his results to the case of vector valued Siegel's modular forms of degree two.
12 schema:genre article
13 schema:inLanguage en
14 schema:isAccessibleForFree false
15 schema:isPartOf N929a8dab585b40b5a7e0d8381dc964e0
16 Nf863626ceedd4b55820ad8368aab8dec
17 sg:journal.1136220
18 schema:keywords Andrianov
19 Andrianov L
20 Hecke theory
21 Siegel modular forms
22 article
23 associated Andrianov L
24 case of vector
25 cases
26 degree two
27 form
28 function
29 modular forms
30 remarkable Hecke theory
31 results
32 theory
33 two
34 vector
35 schema:name Vector valued Siegel's modular forms of degree two and the associated Andrianov L-functions
36 schema:pagination 155-185
37 schema:productId N45c64b8d71e54cdabb064a96be294317
38 Ndf21ad23e5f4419eb4ca162fbd5f3aa7
39 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044202764
40 https://doi.org/10.1007/bf01166080
41 schema:sdDatePublished 2021-12-01T19:04
42 schema:sdLicense https://scigraph.springernature.com/explorer/license/
43 schema:sdPublisher N400294789d48435abd7158d768f68f7b
44 schema:url https://doi.org/10.1007/bf01166080
45 sgo:license sg:explorer/license/
46 sgo:sdDataset articles
47 rdf:type schema:ScholarlyArticle
48 N11d6d3e9eab44348830ab8690c5fbc20 rdf:first sg:person.014350752261.22
49 rdf:rest rdf:nil
50 N400294789d48435abd7158d768f68f7b schema:name Springer Nature - SN SciGraph project
51 rdf:type schema:Organization
52 N45c64b8d71e54cdabb064a96be294317 schema:name dimensions_id
53 schema:value pub.1044202764
54 rdf:type schema:PropertyValue
55 N929a8dab585b40b5a7e0d8381dc964e0 schema:volumeNumber 44
56 rdf:type schema:PublicationVolume
57 Ndf21ad23e5f4419eb4ca162fbd5f3aa7 schema:name doi
58 schema:value 10.1007/bf01166080
59 rdf:type schema:PropertyValue
60 Nf863626ceedd4b55820ad8368aab8dec schema:issueNumber 1-3
61 rdf:type schema:PublicationIssue
62 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
63 schema:name Mathematical Sciences
64 rdf:type schema:DefinedTerm
65 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
66 schema:name Pure Mathematics
67 rdf:type schema:DefinedTerm
68 sg:journal.1136220 schema:issn 0025-2611
69 1432-1785
70 schema:name manuscripta mathematica
71 schema:publisher Springer Nature
72 rdf:type schema:Periodical
73 sg:person.014350752261.22 schema:affiliation grid-institutes:grid.262564.1
74 schema:familyName Arakawa
75 schema:givenName Tsuneo
76 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014350752261.22
77 rdf:type schema:Person
78 sg:pub.10.1007/978-3-540-38509-7_4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036262721
79 https://doi.org/10.1007/978-3-540-38509-7_4
80 rdf:type schema:CreativeWork
81 sg:pub.10.1007/bf01110283 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036295699
82 https://doi.org/10.1007/bf01110283
83 rdf:type schema:CreativeWork
84 sg:pub.10.1007/bf01343553 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004295014
85 https://doi.org/10.1007/bf01343553
86 rdf:type schema:CreativeWork
87 sg:pub.10.1007/bf01594160 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006677281
88 https://doi.org/10.1007/bf01594160
89 rdf:type schema:CreativeWork
90 sg:pub.10.1007/bfb0079929 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013107563
91 https://doi.org/10.1007/bfb0079929
92 rdf:type schema:CreativeWork
93 grid-institutes:grid.262564.1 schema:alternateName Department of Mathematics, Rikkyo University, Nishi-Ikebukuro, 171, Tokyo, Japan
94 schema:name Department of Mathematics, Rikkyo University, Nishi-Ikebukuro, 171, Tokyo, Japan
95 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...