Some characteristics of the flow of polyisobutylene View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1967-07

AUTHORS

G. L. Slonimskii, A. A. Askadskii, V. K. Logvinenko

ABSTRACT

The flow of polyisobutylene under a uniaxial constant tensile load has been studied over a broad interval of temperatures and stresses. In general, the isothermal flow curve (deformation-time) is divided by molecular rearrangement and crystallization into three sections, the first corresponding to flow in the amorphous state and the third, to flow in the crystalline state. The Kargin-Sogolova flow law\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$(\hat \varepsilon = \frac{1}{{\eta i}}\int\limits_0^t {\sigma dt} )$$ \end{document} describes well the first section and almost the third, but not the second section. The results obtained, together with those of an electron-microscope investigation, indicate that supermolecular structures play an important part in elastomer flow. The exhaustion of the lifetime of these structures also leads to a rapid development of deformation after a certain time t*d (i.e., to the appearance of the second section of the flow curve). A relation analogous to the Zhurkov lifetime equation has been found among t*d, the temperature T, and the true stress σ. More... »

PAGES

437-441

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf01150960

DOI

http://dx.doi.org/10.1007/bf01150960

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1049897775


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Earth Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0403", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Geology", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institute of the Chemistry of High-Molecular Compounds AS UkrSSR, Kiev", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Institute of Heteroorganic Compounds AS USSR, Moscow", 
            "Institute of the Chemistry of High-Molecular Compounds AS UkrSSR, Kiev"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Slonimskii", 
        "givenName": "G. L.", 
        "id": "sg:person.07413351157.95", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07413351157.95"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of the Chemistry of High-Molecular Compounds AS UkrSSR, Kiev", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Institute of Heteroorganic Compounds AS USSR, Moscow", 
            "Institute of the Chemistry of High-Molecular Compounds AS UkrSSR, Kiev"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Askadskii", 
        "givenName": "A. A.", 
        "id": "sg:person.016111314251.02", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016111314251.02"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of the Chemistry of High-Molecular Compounds AS UkrSSR, Kiev", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Institute of Heteroorganic Compounds AS USSR, Moscow", 
            "Institute of the Chemistry of High-Molecular Compounds AS UkrSSR, Kiev"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Logvinenko", 
        "givenName": "V. K.", 
        "id": "sg:person.014531402276.14", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014531402276.14"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "1967-07", 
    "datePublishedReg": "1967-07-01", 
    "description": "The flow of polyisobutylene under a uniaxial constant tensile load has been studied over a broad interval of temperatures and stresses. In general, the isothermal flow curve (deformation-time) is divided by molecular rearrangement and crystallization into three sections, the first corresponding to flow in the amorphous state and the third, to flow in the crystalline state. The Kargin-Sogolova flow law\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}\n$$(\\hat \\varepsilon  = \\frac{1}{{\\eta i}}\\int\\limits_0^t {\\sigma dt} )$$\n\\end{document} describes well the first section and almost the third, but not the second section. The results obtained, together with those of an electron-microscope investigation, indicate that supermolecular structures play an important part in elastomer flow. The exhaustion of the lifetime of these structures also leads to a rapid development of deformation after a certain time t*d (i.e., to the appearance of the second section of the flow curve). A relation analogous to the Zhurkov lifetime equation has been found among t*d, the temperature T, and the true stress \u03c3.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/bf01150960", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136433", 
        "issn": [
          "0191-5665", 
          "1573-8922"
        ], 
        "name": "Mechanics of Composite Materials", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "3"
      }
    ], 
    "keywords": [
      "constant tensile load", 
      "isothermal flow curves", 
      "tensile load", 
      "elastomer flow", 
      "true stress \u03c3", 
      "flow curves", 
      "amorphous state", 
      "electron-microscope investigation", 
      "lifetime equation", 
      "stress \u03c3", 
      "flow", 
      "supermolecular structure", 
      "broad interval", 
      "deformation", 
      "polyisobutylene", 
      "load", 
      "rapid development", 
      "temperature T", 
      "temperature", 
      "stress", 
      "first corresponding", 
      "structure", 
      "certain time", 
      "crystallization", 
      "sections", 
      "crystalline state", 
      "investigation", 
      "important part", 
      "lifetime", 
      "equations", 
      "characteristics", 
      "curves", 
      "results", 
      "state", 
      "first section", 
      "part", 
      "time", 
      "molecular rearrangements", 
      "corresponding", 
      "second section", 
      "development", 
      "relation", 
      "intervals", 
      "exhaustion", 
      "rearrangement", 
      "flow of polyisobutylene", 
      "uniaxial constant tensile load", 
      "Kargin-Sogolova flow", 
      "Zhurkov lifetime equation"
    ], 
    "name": "Some characteristics of the flow of polyisobutylene", 
    "pagination": "437-441", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1049897775"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf01150960"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf01150960", 
      "https://app.dimensions.ai/details/publication/pub.1049897775"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T19:03", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_96.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/bf01150960"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01150960'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01150960'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01150960'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01150960'


 

This table displays all metadata directly associated to this object as RDF triples.

122 TRIPLES      21 PREDICATES      75 URIs      67 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf01150960 schema:about anzsrc-for:04
2 anzsrc-for:0403
3 schema:author N56db7af423024277bd26b03c1579aca3
4 schema:datePublished 1967-07
5 schema:datePublishedReg 1967-07-01
6 schema:description The flow of polyisobutylene under a uniaxial constant tensile load has been studied over a broad interval of temperatures and stresses. In general, the isothermal flow curve (deformation-time) is divided by molecular rearrangement and crystallization into three sections, the first corresponding to flow in the amorphous state and the third, to flow in the crystalline state. The Kargin-Sogolova flow law\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$(\hat \varepsilon = \frac{1}{{\eta i}}\int\limits_0^t {\sigma dt} )$$ \end{document} describes well the first section and almost the third, but not the second section. The results obtained, together with those of an electron-microscope investigation, indicate that supermolecular structures play an important part in elastomer flow. The exhaustion of the lifetime of these structures also leads to a rapid development of deformation after a certain time t*d (i.e., to the appearance of the second section of the flow curve). A relation analogous to the Zhurkov lifetime equation has been found among t*d, the temperature T, and the true stress σ.
7 schema:genre article
8 schema:inLanguage en
9 schema:isAccessibleForFree false
10 schema:isPartOf N083390a1d616432ca594ef263ac1f381
11 Nb36683bffc19492f9fa3e26bb8682496
12 sg:journal.1136433
13 schema:keywords Kargin-Sogolova flow
14 Zhurkov lifetime equation
15 amorphous state
16 broad interval
17 certain time
18 characteristics
19 constant tensile load
20 corresponding
21 crystalline state
22 crystallization
23 curves
24 deformation
25 development
26 elastomer flow
27 electron-microscope investigation
28 equations
29 exhaustion
30 first corresponding
31 first section
32 flow
33 flow curves
34 flow of polyisobutylene
35 important part
36 intervals
37 investigation
38 isothermal flow curves
39 lifetime
40 lifetime equation
41 load
42 molecular rearrangements
43 part
44 polyisobutylene
45 rapid development
46 rearrangement
47 relation
48 results
49 second section
50 sections
51 state
52 stress
53 stress σ
54 structure
55 supermolecular structure
56 temperature
57 temperature T
58 tensile load
59 time
60 true stress σ
61 uniaxial constant tensile load
62 schema:name Some characteristics of the flow of polyisobutylene
63 schema:pagination 437-441
64 schema:productId N30f8a4ef278e4dbfada2eadaaea03c67
65 Ne62fb3e8c4034e8f9269deac248de201
66 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049897775
67 https://doi.org/10.1007/bf01150960
68 schema:sdDatePublished 2022-01-01T19:03
69 schema:sdLicense https://scigraph.springernature.com/explorer/license/
70 schema:sdPublisher Ne8a3773691544d97889c4cafa5c10be2
71 schema:url https://doi.org/10.1007/bf01150960
72 sgo:license sg:explorer/license/
73 sgo:sdDataset articles
74 rdf:type schema:ScholarlyArticle
75 N083390a1d616432ca594ef263ac1f381 schema:issueNumber 4
76 rdf:type schema:PublicationIssue
77 N30f8a4ef278e4dbfada2eadaaea03c67 schema:name dimensions_id
78 schema:value pub.1049897775
79 rdf:type schema:PropertyValue
80 N56db7af423024277bd26b03c1579aca3 rdf:first sg:person.07413351157.95
81 rdf:rest Nd0531b2afaa648eea94ea539d7cceed6
82 Nb36683bffc19492f9fa3e26bb8682496 schema:volumeNumber 3
83 rdf:type schema:PublicationVolume
84 Nd0531b2afaa648eea94ea539d7cceed6 rdf:first sg:person.016111314251.02
85 rdf:rest Nfa5eade28cbe48248cfa78875c1fd4a2
86 Ne62fb3e8c4034e8f9269deac248de201 schema:name doi
87 schema:value 10.1007/bf01150960
88 rdf:type schema:PropertyValue
89 Ne8a3773691544d97889c4cafa5c10be2 schema:name Springer Nature - SN SciGraph project
90 rdf:type schema:Organization
91 Nfa5eade28cbe48248cfa78875c1fd4a2 rdf:first sg:person.014531402276.14
92 rdf:rest rdf:nil
93 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
94 schema:name Earth Sciences
95 rdf:type schema:DefinedTerm
96 anzsrc-for:0403 schema:inDefinedTermSet anzsrc-for:
97 schema:name Geology
98 rdf:type schema:DefinedTerm
99 sg:journal.1136433 schema:issn 0191-5665
100 1573-8922
101 schema:name Mechanics of Composite Materials
102 schema:publisher Springer Nature
103 rdf:type schema:Periodical
104 sg:person.014531402276.14 schema:affiliation grid-institutes:None
105 schema:familyName Logvinenko
106 schema:givenName V. K.
107 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014531402276.14
108 rdf:type schema:Person
109 sg:person.016111314251.02 schema:affiliation grid-institutes:None
110 schema:familyName Askadskii
111 schema:givenName A. A.
112 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016111314251.02
113 rdf:type schema:Person
114 sg:person.07413351157.95 schema:affiliation grid-institutes:None
115 schema:familyName Slonimskii
116 schema:givenName G. L.
117 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07413351157.95
118 rdf:type schema:Person
119 grid-institutes:None schema:alternateName Institute of the Chemistry of High-Molecular Compounds AS UkrSSR, Kiev
120 schema:name Institute of Heteroorganic Compounds AS USSR, Moscow
121 Institute of the Chemistry of High-Molecular Compounds AS UkrSSR, Kiev
122 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...