Analyticity of single-server queues in light traffic View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1995-03

AUTHORS

Jian-Qiang Hu

ABSTRACT

Recently, several methods have been proposed to approximate performance measures of queueing systems based on their light traffic derivatives, e.g., the MacLaurin expansion, the Padé approximation, and interpolation with heavy traffic limits. The key condition required in all these approximations is that the performance measures be analytic when the arrival rates equal to zero. In this paper, we study theGI/G/1 queue. We show that if the c.d.f. of the interarrival time can be expressed as a MacLaurin series over [0, ∞), then the mean steady-state system time of a job is indeed analytic when the arrival rate to the queue equals to zero. This condition is satisfied by phase-type distributions but not c.d.f.'s without support [0, ∞), such as uniform and shifted exponential distributions. In fact, we show through two examples that the analyticity does not hold for most commonly used distribution functions which do not satisfy this condition. More... »

PAGES

63-80

References to SciGraph publications

  • 1992-12. Light traffic for workload in queues in QUEUEING SYSTEMS
  • Journal

    TITLE

    Queueing Systems

    ISSUE

    1-2

    VOLUME

    19

    Author Affiliations

    Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/bf01148940

    DOI

    http://dx.doi.org/10.1007/bf01148940

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1052808197


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0905", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Civil Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Boston University", 
              "id": "https://www.grid.ac/institutes/grid.189504.1", 
              "name": [
                "Manufacturing Engineering Department, Boston University, 44 Cummington Street, 02215, Boston, MA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hu", 
            "givenName": "Jian-Qiang", 
            "id": "sg:person.01162364734.10", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01162364734.10"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/0304-4149(85)90041-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023069178"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1017/s0001867800024393", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027050657"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01163865", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044788805", 
              "https://doi.org/10.1007/bf01163865"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01163865", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044788805", 
              "https://doi.org/10.1007/bf01163865"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1017/s0021900200106722", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045518838"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/5.21078", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061179003"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1287/moor.14.1.26", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1064723375"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1287/moor.16.1.57", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1064723470"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1287/moor.8.1.15", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1064724638"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1287/opre.31.5.950", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1064729461"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1287/opre.32.4.909", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1064729545"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1287/opre.34.1.105", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1064729680"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1287/opre.36.3.454", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1064729922"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2307/1427478", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1069490443"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2307/3214801", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1070228953"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1995-03", 
        "datePublishedReg": "1995-03-01", 
        "description": "Recently, several methods have been proposed to approximate performance measures of queueing systems based on their light traffic derivatives, e.g., the MacLaurin expansion, the Pad\u00e9 approximation, and interpolation with heavy traffic limits. The key condition required in all these approximations is that the performance measures be analytic when the arrival rates equal to zero. In this paper, we study theGI/G/1 queue. We show that if the c.d.f. of the interarrival time can be expressed as a MacLaurin series over [0, \u221e), then the mean steady-state system time of a job is indeed analytic when the arrival rate to the queue equals to zero. This condition is satisfied by phase-type distributions but not c.d.f.'s without support [0, \u221e), such as uniform and shifted exponential distributions. In fact, we show through two examples that the analyticity does not hold for most commonly used distribution functions which do not satisfy this condition.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/bf01148940", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1048269", 
            "issn": [
              "0257-0130", 
              "1572-9443"
            ], 
            "name": "Queueing Systems", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1-2", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "19"
          }
        ], 
        "name": "Analyticity of single-server queues in light traffic", 
        "pagination": "63-80", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "fb8a9f66b2147fa1596e88295ae00ed5f6c488baf529916cce34c40f203725cf"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/bf01148940"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1052808197"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/bf01148940", 
          "https://app.dimensions.ai/details/publication/pub.1052808197"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T13:28", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000370_0000000370/records_46741_00000002.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007%2FBF01148940"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01148940'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01148940'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01148940'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01148940'


     

    This table displays all metadata directly associated to this object as RDF triples.

    104 TRIPLES      21 PREDICATES      41 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/bf01148940 schema:about anzsrc-for:09
    2 anzsrc-for:0905
    3 schema:author Nd09871ad9b6e4cb9b89c70ab6fb2c290
    4 schema:citation sg:pub.10.1007/bf01163865
    5 https://doi.org/10.1016/0304-4149(85)90041-9
    6 https://doi.org/10.1017/s0001867800024393
    7 https://doi.org/10.1017/s0021900200106722
    8 https://doi.org/10.1109/5.21078
    9 https://doi.org/10.1287/moor.14.1.26
    10 https://doi.org/10.1287/moor.16.1.57
    11 https://doi.org/10.1287/moor.8.1.15
    12 https://doi.org/10.1287/opre.31.5.950
    13 https://doi.org/10.1287/opre.32.4.909
    14 https://doi.org/10.1287/opre.34.1.105
    15 https://doi.org/10.1287/opre.36.3.454
    16 https://doi.org/10.2307/1427478
    17 https://doi.org/10.2307/3214801
    18 schema:datePublished 1995-03
    19 schema:datePublishedReg 1995-03-01
    20 schema:description Recently, several methods have been proposed to approximate performance measures of queueing systems based on their light traffic derivatives, e.g., the MacLaurin expansion, the Padé approximation, and interpolation with heavy traffic limits. The key condition required in all these approximations is that the performance measures be analytic when the arrival rates equal to zero. In this paper, we study theGI/G/1 queue. We show that if the c.d.f. of the interarrival time can be expressed as a MacLaurin series over [0, ∞), then the mean steady-state system time of a job is indeed analytic when the arrival rate to the queue equals to zero. This condition is satisfied by phase-type distributions but not c.d.f.'s without support [0, ∞), such as uniform and shifted exponential distributions. In fact, we show through two examples that the analyticity does not hold for most commonly used distribution functions which do not satisfy this condition.
    21 schema:genre research_article
    22 schema:inLanguage en
    23 schema:isAccessibleForFree false
    24 schema:isPartOf N44f2b02486f647b48c86a5c3f9e5bbc7
    25 N65b932caceda4740b4ef2eb33de4991c
    26 sg:journal.1048269
    27 schema:name Analyticity of single-server queues in light traffic
    28 schema:pagination 63-80
    29 schema:productId N0257458133f44dc6954388f7857b7bc4
    30 N040ea1c697774cc0b14fdde49481fe49
    31 N82573edae19245938110f4070fb4a64c
    32 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052808197
    33 https://doi.org/10.1007/bf01148940
    34 schema:sdDatePublished 2019-04-11T13:28
    35 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    36 schema:sdPublisher N1c78ccd113cb4bdbbdab5bcbbdd88a18
    37 schema:url http://link.springer.com/10.1007%2FBF01148940
    38 sgo:license sg:explorer/license/
    39 sgo:sdDataset articles
    40 rdf:type schema:ScholarlyArticle
    41 N0257458133f44dc6954388f7857b7bc4 schema:name doi
    42 schema:value 10.1007/bf01148940
    43 rdf:type schema:PropertyValue
    44 N040ea1c697774cc0b14fdde49481fe49 schema:name readcube_id
    45 schema:value fb8a9f66b2147fa1596e88295ae00ed5f6c488baf529916cce34c40f203725cf
    46 rdf:type schema:PropertyValue
    47 N1c78ccd113cb4bdbbdab5bcbbdd88a18 schema:name Springer Nature - SN SciGraph project
    48 rdf:type schema:Organization
    49 N44f2b02486f647b48c86a5c3f9e5bbc7 schema:issueNumber 1-2
    50 rdf:type schema:PublicationIssue
    51 N65b932caceda4740b4ef2eb33de4991c schema:volumeNumber 19
    52 rdf:type schema:PublicationVolume
    53 N82573edae19245938110f4070fb4a64c schema:name dimensions_id
    54 schema:value pub.1052808197
    55 rdf:type schema:PropertyValue
    56 Nd09871ad9b6e4cb9b89c70ab6fb2c290 rdf:first sg:person.01162364734.10
    57 rdf:rest rdf:nil
    58 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    59 schema:name Engineering
    60 rdf:type schema:DefinedTerm
    61 anzsrc-for:0905 schema:inDefinedTermSet anzsrc-for:
    62 schema:name Civil Engineering
    63 rdf:type schema:DefinedTerm
    64 sg:journal.1048269 schema:issn 0257-0130
    65 1572-9443
    66 schema:name Queueing Systems
    67 rdf:type schema:Periodical
    68 sg:person.01162364734.10 schema:affiliation https://www.grid.ac/institutes/grid.189504.1
    69 schema:familyName Hu
    70 schema:givenName Jian-Qiang
    71 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01162364734.10
    72 rdf:type schema:Person
    73 sg:pub.10.1007/bf01163865 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044788805
    74 https://doi.org/10.1007/bf01163865
    75 rdf:type schema:CreativeWork
    76 https://doi.org/10.1016/0304-4149(85)90041-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023069178
    77 rdf:type schema:CreativeWork
    78 https://doi.org/10.1017/s0001867800024393 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027050657
    79 rdf:type schema:CreativeWork
    80 https://doi.org/10.1017/s0021900200106722 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045518838
    81 rdf:type schema:CreativeWork
    82 https://doi.org/10.1109/5.21078 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061179003
    83 rdf:type schema:CreativeWork
    84 https://doi.org/10.1287/moor.14.1.26 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064723375
    85 rdf:type schema:CreativeWork
    86 https://doi.org/10.1287/moor.16.1.57 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064723470
    87 rdf:type schema:CreativeWork
    88 https://doi.org/10.1287/moor.8.1.15 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064724638
    89 rdf:type schema:CreativeWork
    90 https://doi.org/10.1287/opre.31.5.950 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064729461
    91 rdf:type schema:CreativeWork
    92 https://doi.org/10.1287/opre.32.4.909 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064729545
    93 rdf:type schema:CreativeWork
    94 https://doi.org/10.1287/opre.34.1.105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064729680
    95 rdf:type schema:CreativeWork
    96 https://doi.org/10.1287/opre.36.3.454 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064729922
    97 rdf:type schema:CreativeWork
    98 https://doi.org/10.2307/1427478 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069490443
    99 rdf:type schema:CreativeWork
    100 https://doi.org/10.2307/3214801 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070228953
    101 rdf:type schema:CreativeWork
    102 https://www.grid.ac/institutes/grid.189504.1 schema:alternateName Boston University
    103 schema:name Manufacturing Engineering Department, Boston University, 44 Cummington Street, 02215, Boston, MA, USA
    104 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...