Influence of the dipole-dipole interaction on velocity-selective coherent population trapping View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1995-02

AUTHORS

E. Goldstein, P. Pax, K. J. Schernthanner, B. Taylor, P. Meystre

ABSTRACT

We analyze the influence of the dipole-dipole interaction between ground and excited state atoms on atomic cooling by velocity-selective coherent population trapping. We consider two three-level atoms in the λ-configuration, interacting with two counterpropagating laser fields as well as with the electromagnetic vacuum modes. The elimination of these modes in the Born-Markov approximation results in spontaneous decay, which is essential in providing the momentum diffusion necessary for cooling, as well as a two-body dipole-dipole interaction between ground-and excited-state atoms. The corresponding two-body master equation is solved numerically by Monte-Carlo wave-function simulations. Our main result is that although a dark state survives the inclusion of dipole-dipole interactions, the presence of this interaction can significantly slow down the cooling process for sufficiently high atomic densities. More... »

PAGES

161-167

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf01135858

DOI

http://dx.doi.org/10.1007/bf01135858

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1047282322


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0202", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atomic, Molecular, Nuclear, Particle and Plasma Physics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Optical Sciences Center, University of Arizona, 85721, Tucson, AZ, USA", 
          "id": "http://www.grid.ac/institutes/grid.134563.6", 
          "name": [
            "Optical Sciences Center, University of Arizona, 85721, Tucson, AZ, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Goldstein", 
        "givenName": "E.", 
        "id": "sg:person.012103505255.54", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012103505255.54"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Optical Sciences Center, University of Arizona, 85721, Tucson, AZ, USA", 
          "id": "http://www.grid.ac/institutes/grid.134563.6", 
          "name": [
            "Optical Sciences Center, University of Arizona, 85721, Tucson, AZ, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pax", 
        "givenName": "P.", 
        "id": "sg:person.011041602031.87", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011041602031.87"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Optical Sciences Center, University of Arizona, 85721, Tucson, AZ, USA", 
          "id": "http://www.grid.ac/institutes/grid.134563.6", 
          "name": [
            "Optical Sciences Center, University of Arizona, 85721, Tucson, AZ, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Schernthanner", 
        "givenName": "K. J.", 
        "id": "sg:person.015002307075.70", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015002307075.70"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Optical Sciences Center, University of Arizona, 85721, Tucson, AZ, USA", 
          "id": "http://www.grid.ac/institutes/grid.134563.6", 
          "name": [
            "Optical Sciences Center, University of Arizona, 85721, Tucson, AZ, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Taylor", 
        "givenName": "B.", 
        "id": "sg:person.015422445031.97", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015422445031.97"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Optical Sciences Center, University of Arizona, 85721, Tucson, AZ, USA", 
          "id": "http://www.grid.ac/institutes/grid.134563.6", 
          "name": [
            "Optical Sciences Center, University of Arizona, 85721, Tucson, AZ, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Meystre", 
        "givenName": "P.", 
        "id": "sg:person.010042543335.11", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010042543335.11"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-3-662-11654-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021585370", 
          "https://doi.org/10.1007/978-3-662-11654-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02749417", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015264428", 
          "https://doi.org/10.1007/bf02749417"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bfb0044954", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1086114376", 
          "https://doi.org/10.1007/bfb0044954"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02746514", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036463118", 
          "https://doi.org/10.1007/bf02746514"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1995-02", 
    "datePublishedReg": "1995-02-01", 
    "description": "We analyze the influence of the dipole-dipole interaction between ground and excited state atoms on atomic cooling by velocity-selective coherent population trapping. We consider two three-level atoms in the \u03bb-configuration, interacting with two counterpropagating laser fields as well as with the electromagnetic vacuum modes. The elimination of these modes in the Born-Markov approximation results in spontaneous decay, which is essential in providing the momentum diffusion necessary for cooling, as well as a two-body dipole-dipole interaction between ground-and excited-state atoms. The corresponding two-body master equation is solved numerically by Monte-Carlo wave-function simulations. Our main result is that although a dark state survives the inclusion of dipole-dipole interactions, the presence of this interaction can significantly slow down the cooling process for sufficiently high atomic densities.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/bf01135858", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1312262", 
        "issn": [
          "0946-2171", 
          "1432-0649"
        ], 
        "name": "Applied Physics B", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2-3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "60"
      }
    ], 
    "keywords": [
      "velocity-selective coherent population", 
      "dipole-dipole interaction", 
      "coherent population", 
      "excited-state atoms", 
      "three-level atom", 
      "counterpropagating laser fields", 
      "Born-Markov approximation", 
      "excited state atoms", 
      "electromagnetic vacuum modes", 
      "high atomic density", 
      "atomic cooling", 
      "laser field", 
      "state atoms", 
      "vacuum modes", 
      "atomic density", 
      "dark state", 
      "spontaneous decay", 
      "momentum diffusion", 
      "master equation", 
      "atoms", 
      "cooling process", 
      "interaction", 
      "mode", 
      "decay", 
      "field", 
      "approximation", 
      "density", 
      "ground", 
      "cooling", 
      "state", 
      "configuration", 
      "diffusion", 
      "simulations", 
      "equations", 
      "influence", 
      "process", 
      "main results", 
      "presence", 
      "results", 
      "inclusion", 
      "elimination", 
      "population", 
      "two-body dipole-dipole interaction", 
      "two-body master equation", 
      "Monte-Carlo wave-function simulations", 
      "wave-function simulations"
    ], 
    "name": "Influence of the dipole-dipole interaction on velocity-selective coherent population trapping", 
    "pagination": "161-167", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1047282322"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf01135858"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf01135858", 
      "https://app.dimensions.ai/details/publication/pub.1047282322"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T18:08", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_287.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/bf01135858"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01135858'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01135858'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01135858'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01135858'


 

This table displays all metadata directly associated to this object as RDF triples.

148 TRIPLES      22 PREDICATES      76 URIs      64 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf01135858 schema:about anzsrc-for:02
2 anzsrc-for:0202
3 schema:author Ne6a58fe75869423eb90e7346d5b3a660
4 schema:citation sg:pub.10.1007/978-3-662-11654-8
5 sg:pub.10.1007/bf02746514
6 sg:pub.10.1007/bf02749417
7 sg:pub.10.1007/bfb0044954
8 schema:datePublished 1995-02
9 schema:datePublishedReg 1995-02-01
10 schema:description We analyze the influence of the dipole-dipole interaction between ground and excited state atoms on atomic cooling by velocity-selective coherent population trapping. We consider two three-level atoms in the λ-configuration, interacting with two counterpropagating laser fields as well as with the electromagnetic vacuum modes. The elimination of these modes in the Born-Markov approximation results in spontaneous decay, which is essential in providing the momentum diffusion necessary for cooling, as well as a two-body dipole-dipole interaction between ground-and excited-state atoms. The corresponding two-body master equation is solved numerically by Monte-Carlo wave-function simulations. Our main result is that although a dark state survives the inclusion of dipole-dipole interactions, the presence of this interaction can significantly slow down the cooling process for sufficiently high atomic densities.
11 schema:genre article
12 schema:inLanguage en
13 schema:isAccessibleForFree false
14 schema:isPartOf N1c0032891c044dff81abbd9209e241af
15 N6b16d60690b449bfa4fd8d738c6e7cce
16 sg:journal.1312262
17 schema:keywords Born-Markov approximation
18 Monte-Carlo wave-function simulations
19 approximation
20 atomic cooling
21 atomic density
22 atoms
23 coherent population
24 configuration
25 cooling
26 cooling process
27 counterpropagating laser fields
28 dark state
29 decay
30 density
31 diffusion
32 dipole-dipole interaction
33 electromagnetic vacuum modes
34 elimination
35 equations
36 excited state atoms
37 excited-state atoms
38 field
39 ground
40 high atomic density
41 inclusion
42 influence
43 interaction
44 laser field
45 main results
46 master equation
47 mode
48 momentum diffusion
49 population
50 presence
51 process
52 results
53 simulations
54 spontaneous decay
55 state
56 state atoms
57 three-level atom
58 two-body dipole-dipole interaction
59 two-body master equation
60 vacuum modes
61 velocity-selective coherent population
62 wave-function simulations
63 schema:name Influence of the dipole-dipole interaction on velocity-selective coherent population trapping
64 schema:pagination 161-167
65 schema:productId N059489c53ceb4dbb8b18b1e17669e4b5
66 N971915e2a9004cdf908714b9c4e7a25a
67 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047282322
68 https://doi.org/10.1007/bf01135858
69 schema:sdDatePublished 2022-01-01T18:08
70 schema:sdLicense https://scigraph.springernature.com/explorer/license/
71 schema:sdPublisher N120300674aaf49a69749f3a063198c1b
72 schema:url https://doi.org/10.1007/bf01135858
73 sgo:license sg:explorer/license/
74 sgo:sdDataset articles
75 rdf:type schema:ScholarlyArticle
76 N059489c53ceb4dbb8b18b1e17669e4b5 schema:name doi
77 schema:value 10.1007/bf01135858
78 rdf:type schema:PropertyValue
79 N120300674aaf49a69749f3a063198c1b schema:name Springer Nature - SN SciGraph project
80 rdf:type schema:Organization
81 N1c0032891c044dff81abbd9209e241af schema:volumeNumber 60
82 rdf:type schema:PublicationVolume
83 N668f7e97d76c4a09ae60c3aef3c1e478 rdf:first sg:person.010042543335.11
84 rdf:rest rdf:nil
85 N6b16d60690b449bfa4fd8d738c6e7cce schema:issueNumber 2-3
86 rdf:type schema:PublicationIssue
87 N7ea79b1c69014a11acab95f4734e88c3 rdf:first sg:person.015002307075.70
88 rdf:rest Nc253509f2c52479b8d9e04cdf24ec079
89 N971915e2a9004cdf908714b9c4e7a25a schema:name dimensions_id
90 schema:value pub.1047282322
91 rdf:type schema:PropertyValue
92 Nc253509f2c52479b8d9e04cdf24ec079 rdf:first sg:person.015422445031.97
93 rdf:rest N668f7e97d76c4a09ae60c3aef3c1e478
94 Ne6a58fe75869423eb90e7346d5b3a660 rdf:first sg:person.012103505255.54
95 rdf:rest Nff04006315314411bca6d1c1540feefc
96 Nff04006315314411bca6d1c1540feefc rdf:first sg:person.011041602031.87
97 rdf:rest N7ea79b1c69014a11acab95f4734e88c3
98 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
99 schema:name Physical Sciences
100 rdf:type schema:DefinedTerm
101 anzsrc-for:0202 schema:inDefinedTermSet anzsrc-for:
102 schema:name Atomic, Molecular, Nuclear, Particle and Plasma Physics
103 rdf:type schema:DefinedTerm
104 sg:journal.1312262 schema:issn 0946-2171
105 1432-0649
106 schema:name Applied Physics B
107 schema:publisher Springer Nature
108 rdf:type schema:Periodical
109 sg:person.010042543335.11 schema:affiliation grid-institutes:grid.134563.6
110 schema:familyName Meystre
111 schema:givenName P.
112 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010042543335.11
113 rdf:type schema:Person
114 sg:person.011041602031.87 schema:affiliation grid-institutes:grid.134563.6
115 schema:familyName Pax
116 schema:givenName P.
117 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011041602031.87
118 rdf:type schema:Person
119 sg:person.012103505255.54 schema:affiliation grid-institutes:grid.134563.6
120 schema:familyName Goldstein
121 schema:givenName E.
122 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012103505255.54
123 rdf:type schema:Person
124 sg:person.015002307075.70 schema:affiliation grid-institutes:grid.134563.6
125 schema:familyName Schernthanner
126 schema:givenName K. J.
127 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015002307075.70
128 rdf:type schema:Person
129 sg:person.015422445031.97 schema:affiliation grid-institutes:grid.134563.6
130 schema:familyName Taylor
131 schema:givenName B.
132 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015422445031.97
133 rdf:type schema:Person
134 sg:pub.10.1007/978-3-662-11654-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021585370
135 https://doi.org/10.1007/978-3-662-11654-8
136 rdf:type schema:CreativeWork
137 sg:pub.10.1007/bf02746514 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036463118
138 https://doi.org/10.1007/bf02746514
139 rdf:type schema:CreativeWork
140 sg:pub.10.1007/bf02749417 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015264428
141 https://doi.org/10.1007/bf02749417
142 rdf:type schema:CreativeWork
143 sg:pub.10.1007/bfb0044954 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086114376
144 https://doi.org/10.1007/bfb0044954
145 rdf:type schema:CreativeWork
146 grid-institutes:grid.134563.6 schema:alternateName Optical Sciences Center, University of Arizona, 85721, Tucson, AZ, USA
147 schema:name Optical Sciences Center, University of Arizona, 85721, Tucson, AZ, USA
148 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...