In vivo validation of distributed source solutions for the biomagnetic inverse problem View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1993-03

AUTHORS

Andreas A. Ioannides, Robert Muratore, Marshall Balish, Susumu Sato

ABSTRACT

Probabilistic modelling of continuous current sources is applied to the analysis of MEG signals generated by current dipoles implanted in the head of a living human subject. Estimates of the distribution of activity within a circular disk are obtained from signals generated by a single implanted dipole and by a pair of simultaneously active implanted dipoles. The orientation and depth of the disc is determined in advance from the experimental geometry and the measurements. The resulting reconstructions constitute the first in vivo validation of distributed source imaging; they provide a complementary test to earlier works using computer generated data and tests using point source analysis of signals generated by a single implanted dipole. In this work we provide a literal test of spatial resolution by resolving two nearby point-like sources. Temporal resolution is addressed in a de facto manner by imaging at one millisecond intervals. Computer simulations, with controlled amount of noise, are used to demonstrate the robustness of the results, and show the interplay between high spatial accuracy and noise insensitivity. More... »

PAGES

263-273

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf01128993

DOI

http://dx.doi.org/10.1007/bf01128993

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1015833445

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/8507552


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Brain", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Brain Mapping", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Data Collection", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Epilepsies, Partial", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Magnetoencephalography", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Neurological", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Reaction Time", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Reproducibility of Results", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Signal Processing, Computer-Assisted", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "The Open University", 
          "id": "https://www.grid.ac/institutes/grid.10837.3d", 
          "name": [
            "Department of Physics, The Open University, MK7 6AA, Milton Keynes, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ioannides", 
        "givenName": "Andreas A.", 
        "id": "sg:person.0600434417.84", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0600434417.84"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "SUNY Geneseo", 
          "id": "https://www.grid.ac/institutes/grid.264269.d", 
          "name": [
            "Department of Physics and Astronomy, State University of New York, Geneseo, NY, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Muratore", 
        "givenName": "Robert", 
        "id": "sg:person.0650442746.85", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0650442746.85"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Institute of Neurological Disorders and Stroke", 
          "id": "https://www.grid.ac/institutes/grid.416870.c", 
          "name": [
            "Neurophysiology Unit, Medical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Balish", 
        "givenName": "Marshall", 
        "id": "sg:person.0624265744.73", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0624265744.73"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Institute of Neurological Disorders and Stroke", 
          "id": "https://www.grid.ac/institutes/grid.416870.c", 
          "name": [
            "Neurophysiology Unit, Medical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sato", 
        "givenName": "Susumu", 
        "id": "sg:person.013214430267.45", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013214430267.45"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1001/archneur.1990.00530010041016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008289168"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0013-4694(83)90180-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013745538"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0013-4694(83)90180-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013745538"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4613-0581-1_54", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015017414", 
          "https://doi.org/10.1007/978-1-4613-0581-1_54"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4757-1785-3_6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015806302", 
          "https://doi.org/10.1007/978-1-4757-1785-3_6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0168-5597(85)90033-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016706551"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0168-5597(85)90033-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016706551"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01140589", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017457276", 
          "https://doi.org/10.1007/bf01140589"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01140589", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017457276", 
          "https://doi.org/10.1007/bf01140589"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4613-0581-1_129", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018055282", 
          "https://doi.org/10.1007/978-1-4613-0581-1_129"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0013-4694(89)90034-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018330354"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0013-4694(89)90034-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018330354"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4613-0581-1_133", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018818034", 
          "https://doi.org/10.1007/978-1-4613-0581-1_133"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0266-5611/5/4/005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022370600"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1162/jocn.1989.1.4.336", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024059436"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-72658-3_58", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027782657", 
          "https://doi.org/10.1007/978-3-642-72658-3_58"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.88.24.11037", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031262059"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01234124", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031785008", 
          "https://doi.org/10.1007/bf01234124"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4613-0581-1_68", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036005744", 
          "https://doi.org/10.1007/978-1-4613-0581-1_68"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0266-5611/5/6/008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038827201"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0266-5611/6/4/005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041998952"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4613-0581-1_130", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042533204", 
          "https://doi.org/10.1007/978-1-4613-0581-1_130"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1117/12.23657", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044660324"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4613-0581-1_125", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045039679", 
          "https://doi.org/10.1007/978-1-4613-0581-1_125"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1117/12.23649", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053251963"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0143-0815/12/a/005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059037997"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0143-0815/12/a/005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059037997"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tap.1986.1143830", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061494104"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.2814476", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062562589"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1212/wnl.35.12.1702", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064365755"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1212/wnl.41.7.1072", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064370152"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1993-03", 
    "datePublishedReg": "1993-03-01", 
    "description": "Probabilistic modelling of continuous current sources is applied to the analysis of MEG signals generated by current dipoles implanted in the head of a living human subject. Estimates of the distribution of activity within a circular disk are obtained from signals generated by a single implanted dipole and by a pair of simultaneously active implanted dipoles. The orientation and depth of the disc is determined in advance from the experimental geometry and the measurements. The resulting reconstructions constitute the first in vivo validation of distributed source imaging; they provide a complementary test to earlier works using computer generated data and tests using point source analysis of signals generated by a single implanted dipole. In this work we provide a literal test of spatial resolution by resolving two nearby point-like sources. Temporal resolution is addressed in a de facto manner by imaging at one millisecond intervals. Computer simulations, with controlled amount of noise, are used to demonstrate the robustness of the results, and show the interplay between high spatial accuracy and noise insensitivity.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf01128993", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1098975", 
        "issn": [
          "0896-0267", 
          "1573-6792"
        ], 
        "name": "Brain Topography", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "5"
      }
    ], 
    "name": "In vivo validation of distributed source solutions for the biomagnetic inverse problem", 
    "pagination": "263-273", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "4b71466b7c4ff002ede8edc0f262b219791e844006d8c9e70f70d4623dbd876b"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "8507552"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "8903034"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf01128993"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1015833445"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf01128993", 
      "https://app.dimensions.ai/details/publication/pub.1015833445"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:32", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000370_0000000370/records_46765_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/BF01128993"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01128993'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01128993'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01128993'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01128993'


 

This table displays all metadata directly associated to this object as RDF triples.

224 TRIPLES      21 PREDICATES      65 URIs      31 LITERALS      19 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf01128993 schema:about N096d031f4d5a4be4abab7b257f402ae8
2 N237dc4a5e703452481e1bb524ddebe40
3 N35e4a1a453f74f8ba7e4b99f2f694dd7
4 N3ef1ecaac67140b39678a8f4511f5c6d
5 N43042577436344bbbce945bda17f6731
6 N756829cdee6f4855ae487b89e5223a49
7 N88ac71bd675249fca71588003f789930
8 N89d1f41b26354ede942f88a355ff522e
9 N9e57d46535704e77a47195ac5be7cd51
10 Nfb9135f1dfc442cd87c223f9a640884e
11 anzsrc-for:08
12 anzsrc-for:0801
13 schema:author N636806fb061c44138f6db83462d5b517
14 schema:citation sg:pub.10.1007/978-1-4613-0581-1_125
15 sg:pub.10.1007/978-1-4613-0581-1_129
16 sg:pub.10.1007/978-1-4613-0581-1_130
17 sg:pub.10.1007/978-1-4613-0581-1_133
18 sg:pub.10.1007/978-1-4613-0581-1_54
19 sg:pub.10.1007/978-1-4613-0581-1_68
20 sg:pub.10.1007/978-1-4757-1785-3_6
21 sg:pub.10.1007/978-3-642-72658-3_58
22 sg:pub.10.1007/bf01140589
23 sg:pub.10.1007/bf01234124
24 https://doi.org/10.1001/archneur.1990.00530010041016
25 https://doi.org/10.1016/0013-4694(83)90180-3
26 https://doi.org/10.1016/0013-4694(89)90034-5
27 https://doi.org/10.1016/0168-5597(85)90033-4
28 https://doi.org/10.1073/pnas.88.24.11037
29 https://doi.org/10.1088/0143-0815/12/a/005
30 https://doi.org/10.1088/0266-5611/5/4/005
31 https://doi.org/10.1088/0266-5611/5/6/008
32 https://doi.org/10.1088/0266-5611/6/4/005
33 https://doi.org/10.1109/tap.1986.1143830
34 https://doi.org/10.1117/12.23649
35 https://doi.org/10.1117/12.23657
36 https://doi.org/10.1126/science.2814476
37 https://doi.org/10.1162/jocn.1989.1.4.336
38 https://doi.org/10.1212/wnl.35.12.1702
39 https://doi.org/10.1212/wnl.41.7.1072
40 schema:datePublished 1993-03
41 schema:datePublishedReg 1993-03-01
42 schema:description Probabilistic modelling of continuous current sources is applied to the analysis of MEG signals generated by current dipoles implanted in the head of a living human subject. Estimates of the distribution of activity within a circular disk are obtained from signals generated by a single implanted dipole and by a pair of simultaneously active implanted dipoles. The orientation and depth of the disc is determined in advance from the experimental geometry and the measurements. The resulting reconstructions constitute the first in vivo validation of distributed source imaging; they provide a complementary test to earlier works using computer generated data and tests using point source analysis of signals generated by a single implanted dipole. In this work we provide a literal test of spatial resolution by resolving two nearby point-like sources. Temporal resolution is addressed in a de facto manner by imaging at one millisecond intervals. Computer simulations, with controlled amount of noise, are used to demonstrate the robustness of the results, and show the interplay between high spatial accuracy and noise insensitivity.
43 schema:genre research_article
44 schema:inLanguage en
45 schema:isAccessibleForFree false
46 schema:isPartOf Nbfa9434e011e465fb5d8f91ff61a8e6f
47 Ndbdc7e439e2940609f152b3a6eaf49bf
48 sg:journal.1098975
49 schema:name In vivo validation of distributed source solutions for the biomagnetic inverse problem
50 schema:pagination 263-273
51 schema:productId N092555fc038a41f2b0f24333f537dade
52 N6739b72adcd246bf8043819d745d12a5
53 N884011a36bd144db8da8aeb5b97d38b7
54 N8efe58279fed42bd8138fa68aab3cd9c
55 N9fd1e6e27f124989a043e66dbb347dae
56 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015833445
57 https://doi.org/10.1007/bf01128993
58 schema:sdDatePublished 2019-04-11T13:32
59 schema:sdLicense https://scigraph.springernature.com/explorer/license/
60 schema:sdPublisher N8f394d8e0f5a4d7e9e71e34b2294c3d6
61 schema:url http://link.springer.com/10.1007/BF01128993
62 sgo:license sg:explorer/license/
63 sgo:sdDataset articles
64 rdf:type schema:ScholarlyArticle
65 N00cb0d8e85484a0caeb18493bd68ac2b rdf:first sg:person.0650442746.85
66 rdf:rest Nd33ee97a9c1d44a0b22bf4609dcdc3ca
67 N092555fc038a41f2b0f24333f537dade schema:name doi
68 schema:value 10.1007/bf01128993
69 rdf:type schema:PropertyValue
70 N096d031f4d5a4be4abab7b257f402ae8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
71 schema:name Magnetoencephalography
72 rdf:type schema:DefinedTerm
73 N237dc4a5e703452481e1bb524ddebe40 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
74 schema:name Models, Neurological
75 rdf:type schema:DefinedTerm
76 N35e4a1a453f74f8ba7e4b99f2f694dd7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
77 schema:name Brain Mapping
78 rdf:type schema:DefinedTerm
79 N3ef1ecaac67140b39678a8f4511f5c6d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
80 schema:name Reaction Time
81 rdf:type schema:DefinedTerm
82 N43042577436344bbbce945bda17f6731 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
83 schema:name Signal Processing, Computer-Assisted
84 rdf:type schema:DefinedTerm
85 N636806fb061c44138f6db83462d5b517 rdf:first sg:person.0600434417.84
86 rdf:rest N00cb0d8e85484a0caeb18493bd68ac2b
87 N6739b72adcd246bf8043819d745d12a5 schema:name pubmed_id
88 schema:value 8507552
89 rdf:type schema:PropertyValue
90 N756829cdee6f4855ae487b89e5223a49 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
91 schema:name Data Collection
92 rdf:type schema:DefinedTerm
93 N884011a36bd144db8da8aeb5b97d38b7 schema:name dimensions_id
94 schema:value pub.1015833445
95 rdf:type schema:PropertyValue
96 N88ac71bd675249fca71588003f789930 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
97 schema:name Brain
98 rdf:type schema:DefinedTerm
99 N89d1f41b26354ede942f88a355ff522e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
100 schema:name Epilepsies, Partial
101 rdf:type schema:DefinedTerm
102 N8efe58279fed42bd8138fa68aab3cd9c schema:name nlm_unique_id
103 schema:value 8903034
104 rdf:type schema:PropertyValue
105 N8f394d8e0f5a4d7e9e71e34b2294c3d6 schema:name Springer Nature - SN SciGraph project
106 rdf:type schema:Organization
107 N9e57d46535704e77a47195ac5be7cd51 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
108 schema:name Humans
109 rdf:type schema:DefinedTerm
110 N9fd1e6e27f124989a043e66dbb347dae schema:name readcube_id
111 schema:value 4b71466b7c4ff002ede8edc0f262b219791e844006d8c9e70f70d4623dbd876b
112 rdf:type schema:PropertyValue
113 Nbfa9434e011e465fb5d8f91ff61a8e6f schema:issueNumber 3
114 rdf:type schema:PublicationIssue
115 Nd33ee97a9c1d44a0b22bf4609dcdc3ca rdf:first sg:person.0624265744.73
116 rdf:rest Nfcc4d4ea0a5b49c391ec195c7993dc43
117 Ndbdc7e439e2940609f152b3a6eaf49bf schema:volumeNumber 5
118 rdf:type schema:PublicationVolume
119 Nfb9135f1dfc442cd87c223f9a640884e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
120 schema:name Reproducibility of Results
121 rdf:type schema:DefinedTerm
122 Nfcc4d4ea0a5b49c391ec195c7993dc43 rdf:first sg:person.013214430267.45
123 rdf:rest rdf:nil
124 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
125 schema:name Information and Computing Sciences
126 rdf:type schema:DefinedTerm
127 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
128 schema:name Artificial Intelligence and Image Processing
129 rdf:type schema:DefinedTerm
130 sg:journal.1098975 schema:issn 0896-0267
131 1573-6792
132 schema:name Brain Topography
133 rdf:type schema:Periodical
134 sg:person.013214430267.45 schema:affiliation https://www.grid.ac/institutes/grid.416870.c
135 schema:familyName Sato
136 schema:givenName Susumu
137 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013214430267.45
138 rdf:type schema:Person
139 sg:person.0600434417.84 schema:affiliation https://www.grid.ac/institutes/grid.10837.3d
140 schema:familyName Ioannides
141 schema:givenName Andreas A.
142 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0600434417.84
143 rdf:type schema:Person
144 sg:person.0624265744.73 schema:affiliation https://www.grid.ac/institutes/grid.416870.c
145 schema:familyName Balish
146 schema:givenName Marshall
147 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0624265744.73
148 rdf:type schema:Person
149 sg:person.0650442746.85 schema:affiliation https://www.grid.ac/institutes/grid.264269.d
150 schema:familyName Muratore
151 schema:givenName Robert
152 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0650442746.85
153 rdf:type schema:Person
154 sg:pub.10.1007/978-1-4613-0581-1_125 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045039679
155 https://doi.org/10.1007/978-1-4613-0581-1_125
156 rdf:type schema:CreativeWork
157 sg:pub.10.1007/978-1-4613-0581-1_129 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018055282
158 https://doi.org/10.1007/978-1-4613-0581-1_129
159 rdf:type schema:CreativeWork
160 sg:pub.10.1007/978-1-4613-0581-1_130 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042533204
161 https://doi.org/10.1007/978-1-4613-0581-1_130
162 rdf:type schema:CreativeWork
163 sg:pub.10.1007/978-1-4613-0581-1_133 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018818034
164 https://doi.org/10.1007/978-1-4613-0581-1_133
165 rdf:type schema:CreativeWork
166 sg:pub.10.1007/978-1-4613-0581-1_54 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015017414
167 https://doi.org/10.1007/978-1-4613-0581-1_54
168 rdf:type schema:CreativeWork
169 sg:pub.10.1007/978-1-4613-0581-1_68 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036005744
170 https://doi.org/10.1007/978-1-4613-0581-1_68
171 rdf:type schema:CreativeWork
172 sg:pub.10.1007/978-1-4757-1785-3_6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015806302
173 https://doi.org/10.1007/978-1-4757-1785-3_6
174 rdf:type schema:CreativeWork
175 sg:pub.10.1007/978-3-642-72658-3_58 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027782657
176 https://doi.org/10.1007/978-3-642-72658-3_58
177 rdf:type schema:CreativeWork
178 sg:pub.10.1007/bf01140589 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017457276
179 https://doi.org/10.1007/bf01140589
180 rdf:type schema:CreativeWork
181 sg:pub.10.1007/bf01234124 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031785008
182 https://doi.org/10.1007/bf01234124
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1001/archneur.1990.00530010041016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008289168
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1016/0013-4694(83)90180-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013745538
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1016/0013-4694(89)90034-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018330354
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1016/0168-5597(85)90033-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016706551
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1073/pnas.88.24.11037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031262059
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1088/0143-0815/12/a/005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059037997
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1088/0266-5611/5/4/005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022370600
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1088/0266-5611/5/6/008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038827201
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1088/0266-5611/6/4/005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041998952
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1109/tap.1986.1143830 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061494104
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1117/12.23649 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053251963
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1117/12.23657 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044660324
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1126/science.2814476 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062562589
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1162/jocn.1989.1.4.336 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024059436
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1212/wnl.35.12.1702 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064365755
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1212/wnl.41.7.1072 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064370152
215 rdf:type schema:CreativeWork
216 https://www.grid.ac/institutes/grid.10837.3d schema:alternateName The Open University
217 schema:name Department of Physics, The Open University, MK7 6AA, Milton Keynes, UK
218 rdf:type schema:Organization
219 https://www.grid.ac/institutes/grid.264269.d schema:alternateName SUNY Geneseo
220 schema:name Department of Physics and Astronomy, State University of New York, Geneseo, NY, USA
221 rdf:type schema:Organization
222 https://www.grid.ac/institutes/grid.416870.c schema:alternateName National Institute of Neurological Disorders and Stroke
223 schema:name Neurophysiology Unit, Medical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
224 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...