The projection onto the center of an ℓ-algebra View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1994-12

AUTHORS

J. J. Grobler, C. B. Huijsmans

ABSTRACT

In a uniformly complete ℓ-algebra with unite>0 the principal band {e}dd generated bye is a projection band. We prove that the formula of A. R. Schep for the projection onto this band which holds in the ℓ-algebra of order bounded operators on a Dedekind complete vector lattice, in general defines a projection onto the commutant of {e}dd. We present some examples to show that the commutant may be strictly larger than the band {e}dd, and also conditions which guarantee equality. More... »

PAGES

397-403

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf01108771

DOI

http://dx.doi.org/10.1007/bf01108771

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1010808065


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Mathematics, Potchefstroom University for C.H.E., Potchefstroom 2520, South Africa", 
          "id": "http://www.grid.ac/institutes/grid.25881.36", 
          "name": [
            "Department of Mathematics, Potchefstroom University for C.H.E., Potchefstroom 2520, South Africa"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Grobler", 
        "givenName": "J. J.", 
        "id": "sg:person.014326465431.95", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014326465431.95"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Mathematics, Leiden State University, Niels Bohrweg 1, 2333 CA, Leiden, The Netherlands", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Department of Mathematics, Leiden State University, Niels Bohrweg 1, 2333 CA, Leiden, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Huijsmans", 
        "givenName": "C. B.", 
        "id": "sg:person.07517217263.79", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07517217263.79"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "1994-12", 
    "datePublishedReg": "1994-12-01", 
    "description": "In a uniformly complete \u2113-algebra with unite>0 the principal band {e}dd generated bye is a projection band. We prove that the formula of A. R. Schep for the projection onto this band which holds in the \u2113-algebra of order bounded operators on a Dedekind complete vector lattice, in general defines a projection onto the commutant of {e}dd. We present some examples to show that the commutant may be strictly larger than the band {e}dd, and also conditions which guarantee equality.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/bf01108771", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136683", 
        "issn": [
          "0167-8094", 
          "1572-9273"
        ], 
        "name": "Order", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "11"
      }
    ], 
    "keywords": [
      "projections", 
      "center", 
      "conditions", 
      "projection band", 
      "band", 
      "order", 
      "defines", 
      "formula", 
      "principal bands", 
      "bye", 
      "Schep", 
      "example", 
      "operators", 
      "equality", 
      "Dedekind complete vector lattice", 
      "complete vector lattice", 
      "vector lattice", 
      "commutant", 
      "lattice", 
      "general define"
    ], 
    "name": "The projection onto the center of an \u2113-algebra", 
    "pagination": "397-403", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1010808065"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf01108771"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf01108771", 
      "https://app.dimensions.ai/details/publication/pub.1010808065"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T18:06", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_251.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/bf01108771"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01108771'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01108771'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01108771'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01108771'


 

This table displays all metadata directly associated to this object as RDF triples.

88 TRIPLES      21 PREDICATES      46 URIs      38 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf01108771 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N13b4d09a82c24f25ad0ef2ea2aae75c8
4 schema:datePublished 1994-12
5 schema:datePublishedReg 1994-12-01
6 schema:description In a uniformly complete ℓ-algebra with unite>0 the principal band {e}dd generated bye is a projection band. We prove that the formula of A. R. Schep for the projection onto this band which holds in the ℓ-algebra of order bounded operators on a Dedekind complete vector lattice, in general defines a projection onto the commutant of {e}dd. We present some examples to show that the commutant may be strictly larger than the band {e}dd, and also conditions which guarantee equality.
7 schema:genre article
8 schema:inLanguage en
9 schema:isAccessibleForFree false
10 schema:isPartOf N1c4174014f7e4a1c976ad99a6e932188
11 N6bff3517879c4085805abd845bc7796f
12 sg:journal.1136683
13 schema:keywords Dedekind complete vector lattice
14 Schep
15 band
16 bye
17 center
18 commutant
19 complete vector lattice
20 conditions
21 defines
22 equality
23 example
24 formula
25 general define
26 lattice
27 operators
28 order
29 principal bands
30 projection band
31 projections
32 vector lattice
33 schema:name The projection onto the center of an ℓ-algebra
34 schema:pagination 397-403
35 schema:productId Nb25e10e2cebe4a129ca307807aaceb88
36 Ne90b34d70d7a46178c6812ccf577d183
37 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010808065
38 https://doi.org/10.1007/bf01108771
39 schema:sdDatePublished 2022-01-01T18:06
40 schema:sdLicense https://scigraph.springernature.com/explorer/license/
41 schema:sdPublisher N68378e4b19f64c2698e57467a5c4c346
42 schema:url https://doi.org/10.1007/bf01108771
43 sgo:license sg:explorer/license/
44 sgo:sdDataset articles
45 rdf:type schema:ScholarlyArticle
46 N13b4d09a82c24f25ad0ef2ea2aae75c8 rdf:first sg:person.014326465431.95
47 rdf:rest N62d0502eb215433e8e04f2ae47343d87
48 N1c4174014f7e4a1c976ad99a6e932188 schema:volumeNumber 11
49 rdf:type schema:PublicationVolume
50 N62d0502eb215433e8e04f2ae47343d87 rdf:first sg:person.07517217263.79
51 rdf:rest rdf:nil
52 N68378e4b19f64c2698e57467a5c4c346 schema:name Springer Nature - SN SciGraph project
53 rdf:type schema:Organization
54 N6bff3517879c4085805abd845bc7796f schema:issueNumber 4
55 rdf:type schema:PublicationIssue
56 Nb25e10e2cebe4a129ca307807aaceb88 schema:name dimensions_id
57 schema:value pub.1010808065
58 rdf:type schema:PropertyValue
59 Ne90b34d70d7a46178c6812ccf577d183 schema:name doi
60 schema:value 10.1007/bf01108771
61 rdf:type schema:PropertyValue
62 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
63 schema:name Mathematical Sciences
64 rdf:type schema:DefinedTerm
65 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
66 schema:name Pure Mathematics
67 rdf:type schema:DefinedTerm
68 sg:journal.1136683 schema:issn 0167-8094
69 1572-9273
70 schema:name Order
71 schema:publisher Springer Nature
72 rdf:type schema:Periodical
73 sg:person.014326465431.95 schema:affiliation grid-institutes:grid.25881.36
74 schema:familyName Grobler
75 schema:givenName J. J.
76 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014326465431.95
77 rdf:type schema:Person
78 sg:person.07517217263.79 schema:affiliation grid-institutes:None
79 schema:familyName Huijsmans
80 schema:givenName C. B.
81 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07517217263.79
82 rdf:type schema:Person
83 grid-institutes:None schema:alternateName Department of Mathematics, Leiden State University, Niels Bohrweg 1, 2333 CA, Leiden, The Netherlands
84 schema:name Department of Mathematics, Leiden State University, Niels Bohrweg 1, 2333 CA, Leiden, The Netherlands
85 rdf:type schema:Organization
86 grid-institutes:grid.25881.36 schema:alternateName Department of Mathematics, Potchefstroom University for C.H.E., Potchefstroom 2520, South Africa
87 schema:name Department of Mathematics, Potchefstroom University for C.H.E., Potchefstroom 2520, South Africa
88 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...