The universal metric properties of nonlinear transformations View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1979-12

AUTHORS

Mitchell J. Feigenbaum

ABSTRACT

The role of functional equations to describe the exact local structure of highly bifurcated attractors ofxn+1 =λf(xn) independent of a specificf is formally developed. A hierarchy of universal functionsgr(x) exists, each descriptive of the same local structure but at levels of a cluster of 2r points. The hierarchy obeysgr−1(x)=−αgr(gr(x/α), withg=limr → ∞ gr existing and obeyingg(x) = −αg(g(x/α), an equation whose solution determines bothg andα. Forr asymptoticgr ∼ g − δ−rh* where δ > 1 andh are determined as the associated eigenvalue and eigenvector of the operator ℒ:\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathcal{L}\left[ \psi \right] = - \alpha \left[ {\psi \left( {g\left( {{x \mathord{\left/ {\vphantom {x \alpha }} \right. \kern-\nulldelimiterspace} \alpha }} \right)} \right) + g'\left( {g\left( {{x \mathord{\left/ {\vphantom {x \alpha }} \right. \kern-\nulldelimiterspace} \alpha }} \right)} \right)\psi \left( {{{ - x} \mathord{\left/ {\vphantom {{ - x} \alpha }} \right. \kern-\nulldelimiterspace} \alpha }} \right)} \right]$$ \end{document} We conjecture that ℒ possesses a unique eigenvalue in excess of 1, and show that this δ is the λ-convergence rate. The form (*) is then continued to allλ rather than just discreteλr and bifurcation valuesΛr and dynamics at suchλ is determined. These results hold for the high bifurcations of any fundamental cycle. We proceed to analyze the approach to the asymptotic regime and show, granted ℒ's spectral conjecture, the stability of thegr limit of highly iterated λf's, thus establishing our theory in a local sense. We show in the course of this that highly iterated λf's are conjugate togr's, thereby providing some elementary approximation schemes for obtainingλr for a chosenf. More... »

PAGES

669-706

References to SciGraph publications

  • 1978-07. Quantitative universality for a class of nonlinear transformations in JOURNAL OF STATISTICAL PHYSICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/bf01107909

    DOI

    http://dx.doi.org/10.1007/bf01107909

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1048384192


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Theoretical Division, Los Alamos Scientific Laboratory, University of California, Los Alamos, New Mexico", 
              "id": "http://www.grid.ac/institutes/grid.148313.c", 
              "name": [
                "Theoretical Division, Los Alamos Scientific Laboratory, University of California, Los Alamos, New Mexico"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Feigenbaum", 
            "givenName": "Mitchell J.", 
            "id": "sg:person.012752474345.31", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012752474345.31"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf01020332", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023847984", 
              "https://doi.org/10.1007/bf01020332"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1979-12", 
        "datePublishedReg": "1979-12-01", 
        "description": "The role of functional equations to describe the exact local structure of highly bifurcated attractors ofxn+1 =\u03bbf(xn) independent of a specificf is formally developed. A hierarchy of universal functionsgr(x) exists, each descriptive of the same local structure but at levels of a cluster of 2r points. The hierarchy obeysgr\u22121(x)=\u2212\u03b1gr(gr(x/\u03b1), withg=limr \u2192 \u221e gr existing and obeyingg(x) = \u2212\u03b1g(g(x/\u03b1), an equation whose solution determines bothg and\u03b1. Forr asymptoticgr \u223c g \u2212 \u03b4\u2212rh* where \u03b4 > 1 andh are determined as the associated eigenvalue and eigenvector of the operator \u2112:\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}\n$$\\mathcal{L}\\left[ \\psi  \\right] =  - \\alpha \\left[ {\\psi \\left( {g\\left( {{x \\mathord{\\left/ {\\vphantom {x \\alpha }} \\right. \\kern-\\nulldelimiterspace} \\alpha }} \\right)} \\right) + g'\\left( {g\\left( {{x \\mathord{\\left/ {\\vphantom {x \\alpha }} \\right. \\kern-\\nulldelimiterspace} \\alpha }} \\right)} \\right)\\psi \\left( {{{ - x} \\mathord{\\left/ {\\vphantom {{ - x} \\alpha }} \\right. \\kern-\\nulldelimiterspace} \\alpha }} \\right)} \\right]$$\n\\end{document} We conjecture that \u2112 possesses a unique eigenvalue in excess of 1, and show that this \u03b4 is the \u03bb-convergence rate. The form (*) is then continued to all\u03bb rather than just discrete\u03bbr and bifurcation values\u039br and dynamics at such\u03bb is determined. These results hold for the high bifurcations of any fundamental cycle. We proceed to analyze the approach to the asymptotic regime and show, granted \u2112's spectral conjecture, the stability of thegr limit of highly iterated \u03bbf's, thus establishing our theory in a local sense. We show in the course of this that highly iterated \u03bbf's are conjugate togr's, thereby providing some elementary approximation schemes for obtaining\u03bbr for a chosenf.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/bf01107909", 
        "inLanguage": "en", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1040979", 
            "issn": [
              "0022-4715", 
              "1572-9613"
            ], 
            "name": "Journal of Statistical Physics", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "6", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "21"
          }
        ], 
        "keywords": [
          "descriptive", 
          "levels", 
          "role", 
          "point", 
          "clusters", 
          "structure", 
          "hierarchy", 
          "equations", 
          "functional equation", 
          "local structure", 
          "attractors", 
          "same local structure", 
          "exact local structure", 
          "specificf"
        ], 
        "name": "The universal metric properties of nonlinear transformations", 
        "pagination": "669-706", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1048384192"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/bf01107909"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/bf01107909", 
          "https://app.dimensions.ai/details/publication/pub.1048384192"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-01-01T18:01", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_150.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/bf01107909"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01107909'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01107909'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01107909'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01107909'


     

    This table displays all metadata directly associated to this object as RDF triples.

    76 TRIPLES      22 PREDICATES      41 URIs      32 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/bf01107909 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author N802dd477b89f4e96a60d9d243a6421d9
    4 schema:citation sg:pub.10.1007/bf01020332
    5 schema:datePublished 1979-12
    6 schema:datePublishedReg 1979-12-01
    7 schema:description The role of functional equations to describe the exact local structure of highly bifurcated attractors ofxn+1 =λf(xn) independent of a specificf is formally developed. A hierarchy of universal functionsgr(x) exists, each descriptive of the same local structure but at levels of a cluster of 2r points. The hierarchy obeysgr−1(x)=−αgr(gr(x/α), withg=limr → ∞ gr existing and obeyingg(x) = −αg(g(x/α), an equation whose solution determines bothg andα. Forr asymptoticgr ∼ g − δ−rh* where δ > 1 andh are determined as the associated eigenvalue and eigenvector of the operator ℒ:\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathcal{L}\left[ \psi \right] = - \alpha \left[ {\psi \left( {g\left( {{x \mathord{\left/ {\vphantom {x \alpha }} \right. \kern-\nulldelimiterspace} \alpha }} \right)} \right) + g'\left( {g\left( {{x \mathord{\left/ {\vphantom {x \alpha }} \right. \kern-\nulldelimiterspace} \alpha }} \right)} \right)\psi \left( {{{ - x} \mathord{\left/ {\vphantom {{ - x} \alpha }} \right. \kern-\nulldelimiterspace} \alpha }} \right)} \right]$$ \end{document} We conjecture that ℒ possesses a unique eigenvalue in excess of 1, and show that this δ is the λ-convergence rate. The form (*) is then continued to allλ rather than just discreteλr and bifurcation valuesΛr and dynamics at suchλ is determined. These results hold for the high bifurcations of any fundamental cycle. We proceed to analyze the approach to the asymptotic regime and show, granted ℒ's spectral conjecture, the stability of thegr limit of highly iterated λf's, thus establishing our theory in a local sense. We show in the course of this that highly iterated λf's are conjugate togr's, thereby providing some elementary approximation schemes for obtainingλr for a chosenf.
    8 schema:genre article
    9 schema:inLanguage en
    10 schema:isAccessibleForFree false
    11 schema:isPartOf N684c67538d16428bbcdf6554b49f1ae8
    12 N710e5a229533421d86891e522909830c
    13 sg:journal.1040979
    14 schema:keywords attractors
    15 clusters
    16 descriptive
    17 equations
    18 exact local structure
    19 functional equation
    20 hierarchy
    21 levels
    22 local structure
    23 point
    24 role
    25 same local structure
    26 specificf
    27 structure
    28 schema:name The universal metric properties of nonlinear transformations
    29 schema:pagination 669-706
    30 schema:productId N27cbfb03788a472ca3a079e0736e17c2
    31 Ne8bac5cd36ea4678b23c6cba46557402
    32 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048384192
    33 https://doi.org/10.1007/bf01107909
    34 schema:sdDatePublished 2022-01-01T18:01
    35 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    36 schema:sdPublisher N3706d835c58648dca0fda5d80a782f98
    37 schema:url https://doi.org/10.1007/bf01107909
    38 sgo:license sg:explorer/license/
    39 sgo:sdDataset articles
    40 rdf:type schema:ScholarlyArticle
    41 N27cbfb03788a472ca3a079e0736e17c2 schema:name doi
    42 schema:value 10.1007/bf01107909
    43 rdf:type schema:PropertyValue
    44 N3706d835c58648dca0fda5d80a782f98 schema:name Springer Nature - SN SciGraph project
    45 rdf:type schema:Organization
    46 N684c67538d16428bbcdf6554b49f1ae8 schema:volumeNumber 21
    47 rdf:type schema:PublicationVolume
    48 N710e5a229533421d86891e522909830c schema:issueNumber 6
    49 rdf:type schema:PublicationIssue
    50 N802dd477b89f4e96a60d9d243a6421d9 rdf:first sg:person.012752474345.31
    51 rdf:rest rdf:nil
    52 Ne8bac5cd36ea4678b23c6cba46557402 schema:name dimensions_id
    53 schema:value pub.1048384192
    54 rdf:type schema:PropertyValue
    55 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    56 schema:name Mathematical Sciences
    57 rdf:type schema:DefinedTerm
    58 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    59 schema:name Pure Mathematics
    60 rdf:type schema:DefinedTerm
    61 sg:journal.1040979 schema:issn 0022-4715
    62 1572-9613
    63 schema:name Journal of Statistical Physics
    64 schema:publisher Springer Nature
    65 rdf:type schema:Periodical
    66 sg:person.012752474345.31 schema:affiliation grid-institutes:grid.148313.c
    67 schema:familyName Feigenbaum
    68 schema:givenName Mitchell J.
    69 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012752474345.31
    70 rdf:type schema:Person
    71 sg:pub.10.1007/bf01020332 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023847984
    72 https://doi.org/10.1007/bf01020332
    73 rdf:type schema:CreativeWork
    74 grid-institutes:grid.148313.c schema:alternateName Theoretical Division, Los Alamos Scientific Laboratory, University of California, Los Alamos, New Mexico
    75 schema:name Theoretical Division, Los Alamos Scientific Laboratory, University of California, Los Alamos, New Mexico
    76 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...