Equation of steady-state capillary gravitational-gyroscopic waves on shallow water and Kelvin waves View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1988-09

AUTHORS

S. A. Gabov, A. G. Sveshnikov

ABSTRACT

On the basis of a spectral asymptotic method developed by the authors, a rigorous derivation is given on the equation of capillary waves on shallow water with consideration of the rotation of the fluid and its stratification. The character of the wave motions described by this equation is investigated, and the existence of capillary Kelvin waves is established. Moreover, the problem of the diffraction of these waves by a half plane is studied. More... »

PAGES

2138-2177

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf01106940

DOI

http://dx.doi.org/10.1007/bf01106940

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1015174175


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "familyName": "Gabov", 
        "givenName": "S. A.", 
        "id": "sg:person.013524530137.71", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013524530137.71"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Sveshnikov", 
        "givenName": "A. G.", 
        "id": "sg:person.016301366207.46", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016301366207.46"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "1988-09", 
    "datePublishedReg": "1988-09-01", 
    "description": "On the basis of a spectral asymptotic method developed by the authors, a rigorous derivation is given on the equation of capillary waves on shallow water with consideration of the rotation of the fluid and its stratification. The character of the wave motions described by this equation is investigated, and the existence of capillary Kelvin waves is established. Moreover, the problem of the diffraction of these waves by a half plane is studied.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/bf01106940", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136516", 
        "issn": [
          "1072-3374", 
          "1573-8795"
        ], 
        "name": "Journal of Mathematical Sciences", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "42"
      }
    ], 
    "keywords": [
      "asymptotic method", 
      "rigorous derivation", 
      "wave motion", 
      "Kelvin waves", 
      "half plane", 
      "equations", 
      "capillary waves", 
      "waves", 
      "shallow water", 
      "derivation", 
      "motion", 
      "problem", 
      "existence", 
      "plane", 
      "rotation", 
      "fluid", 
      "diffraction", 
      "consideration", 
      "basis", 
      "character", 
      "authors", 
      "water", 
      "stratification", 
      "method"
    ], 
    "name": "Equation of steady-state capillary gravitational-gyroscopic waves on shallow water and Kelvin waves", 
    "pagination": "2138-2177", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1015174175"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf01106940"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf01106940", 
      "https://app.dimensions.ai/details/publication/pub.1015174175"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-05-20T07:18", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_205.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/bf01106940"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01106940'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01106940'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01106940'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01106940'


 

This table displays all metadata directly associated to this object as RDF triples.

84 TRIPLES      21 PREDICATES      50 URIs      42 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf01106940 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N27c7a841a181453f98a556cc86c17528
4 schema:datePublished 1988-09
5 schema:datePublishedReg 1988-09-01
6 schema:description On the basis of a spectral asymptotic method developed by the authors, a rigorous derivation is given on the equation of capillary waves on shallow water with consideration of the rotation of the fluid and its stratification. The character of the wave motions described by this equation is investigated, and the existence of capillary Kelvin waves is established. Moreover, the problem of the diffraction of these waves by a half plane is studied.
7 schema:genre article
8 schema:inLanguage en
9 schema:isAccessibleForFree false
10 schema:isPartOf N37e5392b2fe043aeab1b2537db570528
11 N3a32039ba353482ca9606d9065728f6e
12 sg:journal.1136516
13 schema:keywords Kelvin waves
14 asymptotic method
15 authors
16 basis
17 capillary waves
18 character
19 consideration
20 derivation
21 diffraction
22 equations
23 existence
24 fluid
25 half plane
26 method
27 motion
28 plane
29 problem
30 rigorous derivation
31 rotation
32 shallow water
33 stratification
34 water
35 wave motion
36 waves
37 schema:name Equation of steady-state capillary gravitational-gyroscopic waves on shallow water and Kelvin waves
38 schema:pagination 2138-2177
39 schema:productId N15462225d0cd4a00a85f0a8535d00c45
40 N75500fd86a6d4a248b5ef667c055cc24
41 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015174175
42 https://doi.org/10.1007/bf01106940
43 schema:sdDatePublished 2022-05-20T07:18
44 schema:sdLicense https://scigraph.springernature.com/explorer/license/
45 schema:sdPublisher Nd234760ffbde4088adc3e51d0c7bdda2
46 schema:url https://doi.org/10.1007/bf01106940
47 sgo:license sg:explorer/license/
48 sgo:sdDataset articles
49 rdf:type schema:ScholarlyArticle
50 N15462225d0cd4a00a85f0a8535d00c45 schema:name doi
51 schema:value 10.1007/bf01106940
52 rdf:type schema:PropertyValue
53 N27c7a841a181453f98a556cc86c17528 rdf:first sg:person.013524530137.71
54 rdf:rest N2b911a329da54071978152d18741b955
55 N2b911a329da54071978152d18741b955 rdf:first sg:person.016301366207.46
56 rdf:rest rdf:nil
57 N37e5392b2fe043aeab1b2537db570528 schema:issueNumber 6
58 rdf:type schema:PublicationIssue
59 N3a32039ba353482ca9606d9065728f6e schema:volumeNumber 42
60 rdf:type schema:PublicationVolume
61 N75500fd86a6d4a248b5ef667c055cc24 schema:name dimensions_id
62 schema:value pub.1015174175
63 rdf:type schema:PropertyValue
64 Nd234760ffbde4088adc3e51d0c7bdda2 schema:name Springer Nature - SN SciGraph project
65 rdf:type schema:Organization
66 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
67 schema:name Mathematical Sciences
68 rdf:type schema:DefinedTerm
69 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
70 schema:name Pure Mathematics
71 rdf:type schema:DefinedTerm
72 sg:journal.1136516 schema:issn 1072-3374
73 1573-8795
74 schema:name Journal of Mathematical Sciences
75 schema:publisher Springer Nature
76 rdf:type schema:Periodical
77 sg:person.013524530137.71 schema:familyName Gabov
78 schema:givenName S. A.
79 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013524530137.71
80 rdf:type schema:Person
81 sg:person.016301366207.46 schema:familyName Sveshnikov
82 schema:givenName A. G.
83 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016301366207.46
84 rdf:type schema:Person
 




Preview window. Press ESC to close (or click here)


...