On the Hausdorff dimension of fractal attractors View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1981-09

AUTHORS

P. Grassberger

ABSTRACT

We consider such mappingsxn+1=F(xn) of an interval into itself for which the attractor is a Cantor set. For the same class of mappings for which the Feigenbaum scaling laws hold, we show that the Hausdorff dimension of the attractor is universally equal toD=0.538 ...

PAGES

173-179

References to SciGraph publications

Journal

TITLE

Journal of Statistical Physics

ISSUE

1

VOLUME

26

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf01106792

DOI

http://dx.doi.org/10.1007/bf01106792

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1007012495


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Wuppertal", 
          "id": "https://www.grid.ac/institutes/grid.7787.f", 
          "name": [
            "Physics Department, University of Wuppertal, Wuppertal, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Grassberger", 
        "givenName": "P.", 
        "id": "sg:person.0704113004.84", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0704113004.84"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf01020332", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023847984", 
          "https://doi.org/10.1007/bf01020332"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01107910", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026305106", 
          "https://doi.org/10.1007/bf01107910"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02193555", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027110040", 
          "https://doi.org/10.1007/bf02193555"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02193555", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027110040", 
          "https://doi.org/10.1007/bf02193555"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01646553", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034658804", 
          "https://doi.org/10.1007/bf01646553"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01646553", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034658804", 
          "https://doi.org/10.1007/bf01646553"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01646553", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034658804", 
          "https://doi.org/10.1007/bf01646553"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01107909", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048384192", 
          "https://doi.org/10.1007/bf01107909"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1051/jphyslet:019790040016041900", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057008984"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/283092", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058593215"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.45.1175", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060785260"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.45.1175", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060785260"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1143/ptp.63.1044", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063137743"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1981-09", 
    "datePublishedReg": "1981-09-01", 
    "description": "We consider such mappingsxn+1=F(xn) of an interval into itself for which the attractor is a Cantor set. For the same class of mappings for which the Feigenbaum scaling laws hold, we show that the Hausdorff dimension of the attractor is universally equal toD=0.538 ...", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf01106792", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1040979", 
        "issn": [
          "0022-4715", 
          "1572-9613"
        ], 
        "name": "Journal of Statistical Physics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "26"
      }
    ], 
    "name": "On the Hausdorff dimension of fractal attractors", 
    "pagination": "173-179", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "21678d94a30da24b28d7fbd99c4706df6304998eadf1ab8c2a45971b2d346dc3"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf01106792"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1007012495"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf01106792", 
      "https://app.dimensions.ai/details/publication/pub.1007012495"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:31", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000370_0000000370/records_46760_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/BF01106792"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01106792'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01106792'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01106792'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01106792'


 

This table displays all metadata directly associated to this object as RDF triples.

85 TRIPLES      20 PREDICATES      34 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf01106792 schema:author Nce7bff90f321438fbf9eda8031884577
2 schema:citation sg:pub.10.1007/bf01020332
3 sg:pub.10.1007/bf01107909
4 sg:pub.10.1007/bf01107910
5 sg:pub.10.1007/bf01646553
6 sg:pub.10.1007/bf02193555
7 https://doi.org/10.1051/jphyslet:019790040016041900
8 https://doi.org/10.1086/283092
9 https://doi.org/10.1103/physrevlett.45.1175
10 https://doi.org/10.1143/ptp.63.1044
11 schema:datePublished 1981-09
12 schema:datePublishedReg 1981-09-01
13 schema:description We consider such mappingsxn+1=F(xn) of an interval into itself for which the attractor is a Cantor set. For the same class of mappings for which the Feigenbaum scaling laws hold, we show that the Hausdorff dimension of the attractor is universally equal toD=0.538 ...
14 schema:genre research_article
15 schema:inLanguage en
16 schema:isAccessibleForFree false
17 schema:isPartOf N2b665962522e4a8ba521b58004bf9edb
18 N7fdee7ef0dbf4d20903367242330a0e1
19 sg:journal.1040979
20 schema:name On the Hausdorff dimension of fractal attractors
21 schema:pagination 173-179
22 schema:productId N09bb1a716edf4b4ca39b7998f669e689
23 Nab929ba6d8794de8a843e6e006b3b334
24 Nc0b5e47400a3484d8e930d3b96e28b8a
25 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007012495
26 https://doi.org/10.1007/bf01106792
27 schema:sdDatePublished 2019-04-11T13:31
28 schema:sdLicense https://scigraph.springernature.com/explorer/license/
29 schema:sdPublisher N2b607db91c8d4418a94aed8c67015083
30 schema:url http://link.springer.com/10.1007/BF01106792
31 sgo:license sg:explorer/license/
32 sgo:sdDataset articles
33 rdf:type schema:ScholarlyArticle
34 N09bb1a716edf4b4ca39b7998f669e689 schema:name readcube_id
35 schema:value 21678d94a30da24b28d7fbd99c4706df6304998eadf1ab8c2a45971b2d346dc3
36 rdf:type schema:PropertyValue
37 N2b607db91c8d4418a94aed8c67015083 schema:name Springer Nature - SN SciGraph project
38 rdf:type schema:Organization
39 N2b665962522e4a8ba521b58004bf9edb schema:volumeNumber 26
40 rdf:type schema:PublicationVolume
41 N7fdee7ef0dbf4d20903367242330a0e1 schema:issueNumber 1
42 rdf:type schema:PublicationIssue
43 Nab929ba6d8794de8a843e6e006b3b334 schema:name doi
44 schema:value 10.1007/bf01106792
45 rdf:type schema:PropertyValue
46 Nc0b5e47400a3484d8e930d3b96e28b8a schema:name dimensions_id
47 schema:value pub.1007012495
48 rdf:type schema:PropertyValue
49 Nce7bff90f321438fbf9eda8031884577 rdf:first sg:person.0704113004.84
50 rdf:rest rdf:nil
51 sg:journal.1040979 schema:issn 0022-4715
52 1572-9613
53 schema:name Journal of Statistical Physics
54 rdf:type schema:Periodical
55 sg:person.0704113004.84 schema:affiliation https://www.grid.ac/institutes/grid.7787.f
56 schema:familyName Grassberger
57 schema:givenName P.
58 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0704113004.84
59 rdf:type schema:Person
60 sg:pub.10.1007/bf01020332 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023847984
61 https://doi.org/10.1007/bf01020332
62 rdf:type schema:CreativeWork
63 sg:pub.10.1007/bf01107909 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048384192
64 https://doi.org/10.1007/bf01107909
65 rdf:type schema:CreativeWork
66 sg:pub.10.1007/bf01107910 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026305106
67 https://doi.org/10.1007/bf01107910
68 rdf:type schema:CreativeWork
69 sg:pub.10.1007/bf01646553 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034658804
70 https://doi.org/10.1007/bf01646553
71 rdf:type schema:CreativeWork
72 sg:pub.10.1007/bf02193555 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027110040
73 https://doi.org/10.1007/bf02193555
74 rdf:type schema:CreativeWork
75 https://doi.org/10.1051/jphyslet:019790040016041900 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057008984
76 rdf:type schema:CreativeWork
77 https://doi.org/10.1086/283092 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058593215
78 rdf:type schema:CreativeWork
79 https://doi.org/10.1103/physrevlett.45.1175 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060785260
80 rdf:type schema:CreativeWork
81 https://doi.org/10.1143/ptp.63.1044 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063137743
82 rdf:type schema:CreativeWork
83 https://www.grid.ac/institutes/grid.7787.f schema:alternateName University of Wuppertal
84 schema:name Physics Department, University of Wuppertal, Wuppertal, Germany
85 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...