The impact of potential abrupt climate changes on near-term policy choices View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1994-04

AUTHORS

Robert J. Lempert, Michael E. Schlesinger, James K. Hammitt

ABSTRACT

We investigate an important scientific uncertainty facing climate-change policymakers, namely, the impact of potential abrupt climatic change. We examine sequential decision strategies for abating climate change where near-term policies are viewed as the first of a series of decisions which adapt over the years to improving scientific information. We compare two illustrative near-term (1992–2002) policies - moderate and aggressive emission reductions - followed by a subsequent long-term policy chosen to limit global-mean temperature change to a specified ‘climate target’. We calculate the global-mean surface temperature change using a simple climate/ocean model and simple models of greenhouse-gas concentrations. We alter model parameters to examine the impact of abrupt changes in the sinks of carbon dioxide, the sources of methane, the circulation of the oceans, and the climate sensitivity, ΔT2x. Although the abrupt changes increase the long-term costs of responding to climate change, they do not significantly affect the comparatively small cost difference between near-term strategies. Except for an abrupt increase in ΔT2x, the investigated abrupt climate changes do not significantly alter the values of the climate target for which each near-term strategy is preferred. In contrast, innovations that reduce the cost of limiting greenhouse-gas emissions offer the potential for substantial abatement cost savings, regardless of which level of near-term abatement is selected. More... »

PAGES

351-376

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf01094402

DOI

http://dx.doi.org/10.1007/bf01094402

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1006954065


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Earth Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0406", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Geography and Environmental Geoscience", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "RAND Corporation, 1700 Main Street, 90407-2138, Santa Monica, CA, USA", 
          "id": "http://www.grid.ac/institutes/grid.34474.30", 
          "name": [
            "RAND Corporation, 1700 Main Street, 90407-2138, Santa Monica, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lempert", 
        "givenName": "Robert J.", 
        "id": "sg:person.01214111434.56", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01214111434.56"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Atmospheric Sciences, University of Illinois at Urbana-Champaign, 105 South Gregory Avenue, 61801, Urbana, IL, USA", 
          "id": "http://www.grid.ac/institutes/grid.35403.31", 
          "name": [
            "Department of Atmospheric Sciences, University of Illinois at Urbana-Champaign, 105 South Gregory Avenue, 61801, Urbana, IL, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Schlesinger", 
        "givenName": "Michael E.", 
        "id": "sg:person.015755327722.56", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015755327722.56"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Health Policy and Management, Harvard School of Public Health, 677 Huntington Avenue, 02115, Boston, MA, USA", 
          "id": "http://www.grid.ac/institutes/grid.38142.3c", 
          "name": [
            "RAND Corporation, 1700 Main Street, 90407-2138, Santa Monica, CA, USA", 
            "Department of Health Policy and Management, Harvard School of Public Health, 677 Huntington Avenue, 02115, Boston, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hammitt", 
        "givenName": "James K.", 
        "id": "sg:person.01326506313.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01326506313.38"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/350219a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011203009", 
          "https://doi.org/10.1038/350219a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/scientificamerican0990-64", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056600963", 
          "https://doi.org/10.1038/scientificamerican0990-64"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/328123a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047854869", 
          "https://doi.org/10.1038/328123a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-94-009-0691-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012750287", 
          "https://doi.org/10.1007/978-94-009-0691-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/357293a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027555370", 
          "https://doi.org/10.1038/357293a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00134964", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000888475", 
          "https://doi.org/10.1007/bf00134964"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01054491", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040451933", 
          "https://doi.org/10.1007/bf01054491"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/357315a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011758178", 
          "https://doi.org/10.1038/357315a0"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1994-04", 
    "datePublishedReg": "1994-04-01", 
    "description": "We investigate an important scientific uncertainty facing climate-change policymakers, namely, the impact of potential abrupt climatic change. We examine sequential decision strategies for abating climate change where near-term policies are viewed as the first of a series of decisions which adapt over the years to improving scientific information. We compare two illustrative near-term (1992\u20132002) policies - moderate and aggressive emission reductions - followed by a subsequent long-term policy chosen to limit global-mean temperature change to a specified \u2018climate target\u2019. We calculate the global-mean surface temperature change using a simple climate/ocean model and simple models of greenhouse-gas concentrations. We alter model parameters to examine the impact of abrupt changes in the sinks of carbon dioxide, the sources of methane, the circulation of the oceans, and the climate sensitivity, \u0394T2x. Although the abrupt changes increase the long-term costs of responding to climate change, they do not significantly affect the comparatively small cost difference between near-term strategies. Except for an abrupt increase in \u0394T2x, the investigated abrupt climate changes do not significantly alter the values of the climate target for which each near-term strategy is preferred. In contrast, innovations that reduce the cost of limiting greenhouse-gas emissions offer the potential for substantial abatement cost savings, regardless of which level of near-term abatement is selected.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/bf01094402", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1028211", 
        "issn": [
          "0165-0009", 
          "1573-1480"
        ], 
        "name": "Climatic Change", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "26"
      }
    ], 
    "keywords": [
      "abrupt climate change", 
      "climate change", 
      "global mean surface temperature change", 
      "global mean temperature change", 
      "abrupt climatic changes", 
      "greenhouse gas concentrations", 
      "surface temperature changes", 
      "source of methane", 
      "abrupt changes", 
      "near-term abatement", 
      "temperature changes", 
      "ocean model", 
      "climate sensitivity", 
      "climate-change policymakers", 
      "climatic changes", 
      "near-term strategy", 
      "near-term policies", 
      "\u0394T2x", 
      "abrupt increase", 
      "small cost difference", 
      "carbon dioxide", 
      "sequential decision strategy", 
      "abatement cost savings", 
      "climate targets", 
      "greenhouse gas emissions", 
      "Ocean", 
      "model parameters", 
      "scientific uncertainty", 
      "simple model", 
      "sink", 
      "circulation", 
      "changes", 
      "methane", 
      "emission", 
      "impact", 
      "uncertainty", 
      "scientific information", 
      "source", 
      "dioxide", 
      "model", 
      "concentration", 
      "series", 
      "long-term policies", 
      "contrast", 
      "years", 
      "values", 
      "increase", 
      "parameters", 
      "information", 
      "potential", 
      "abatement", 
      "differences", 
      "sensitivity", 
      "levels", 
      "strategies", 
      "policymakers", 
      "target", 
      "long-term costs", 
      "policy", 
      "choice", 
      "decisions", 
      "cost", 
      "policy choices", 
      "decision strategies", 
      "innovation", 
      "series of decisions", 
      "savings", 
      "cost savings", 
      "cost differences"
    ], 
    "name": "The impact of potential abrupt climate changes on near-term policy choices", 
    "pagination": "351-376", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1006954065"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf01094402"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf01094402", 
      "https://app.dimensions.ai/details/publication/pub.1006954065"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-06-01T21:59", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220601/entities/gbq_results/article/article_245.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/bf01094402"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01094402'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01094402'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01094402'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01094402'


 

This table displays all metadata directly associated to this object as RDF triples.

180 TRIPLES      22 PREDICATES      103 URIs      87 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf01094402 schema:about anzsrc-for:04
2 anzsrc-for:0406
3 schema:author N943440db498c47ffb1d9ced156b8ffee
4 schema:citation sg:pub.10.1007/978-94-009-0691-4
5 sg:pub.10.1007/bf00134964
6 sg:pub.10.1007/bf01054491
7 sg:pub.10.1038/328123a0
8 sg:pub.10.1038/350219a0
9 sg:pub.10.1038/357293a0
10 sg:pub.10.1038/357315a0
11 sg:pub.10.1038/scientificamerican0990-64
12 schema:datePublished 1994-04
13 schema:datePublishedReg 1994-04-01
14 schema:description We investigate an important scientific uncertainty facing climate-change policymakers, namely, the impact of potential abrupt climatic change. We examine sequential decision strategies for abating climate change where near-term policies are viewed as the first of a series of decisions which adapt over the years to improving scientific information. We compare two illustrative near-term (1992–2002) policies - moderate and aggressive emission reductions - followed by a subsequent long-term policy chosen to limit global-mean temperature change to a specified ‘climate target’. We calculate the global-mean surface temperature change using a simple climate/ocean model and simple models of greenhouse-gas concentrations. We alter model parameters to examine the impact of abrupt changes in the sinks of carbon dioxide, the sources of methane, the circulation of the oceans, and the climate sensitivity, ΔT2x. Although the abrupt changes increase the long-term costs of responding to climate change, they do not significantly affect the comparatively small cost difference between near-term strategies. Except for an abrupt increase in ΔT2x, the investigated abrupt climate changes do not significantly alter the values of the climate target for which each near-term strategy is preferred. In contrast, innovations that reduce the cost of limiting greenhouse-gas emissions offer the potential for substantial abatement cost savings, regardless of which level of near-term abatement is selected.
15 schema:genre article
16 schema:inLanguage en
17 schema:isAccessibleForFree false
18 schema:isPartOf Nb11811e18df5401b84fcb587a362d299
19 Nd6db436ac5eb42f180ed7665a312be78
20 sg:journal.1028211
21 schema:keywords Ocean
22 abatement
23 abatement cost savings
24 abrupt changes
25 abrupt climate change
26 abrupt climatic changes
27 abrupt increase
28 carbon dioxide
29 changes
30 choice
31 circulation
32 climate change
33 climate sensitivity
34 climate targets
35 climate-change policymakers
36 climatic changes
37 concentration
38 contrast
39 cost
40 cost differences
41 cost savings
42 decision strategies
43 decisions
44 differences
45 dioxide
46 emission
47 global mean surface temperature change
48 global mean temperature change
49 greenhouse gas concentrations
50 greenhouse gas emissions
51 impact
52 increase
53 information
54 innovation
55 levels
56 long-term costs
57 long-term policies
58 methane
59 model
60 model parameters
61 near-term abatement
62 near-term policies
63 near-term strategy
64 ocean model
65 parameters
66 policy
67 policy choices
68 policymakers
69 potential
70 savings
71 scientific information
72 scientific uncertainty
73 sensitivity
74 sequential decision strategy
75 series
76 series of decisions
77 simple model
78 sink
79 small cost difference
80 source
81 source of methane
82 strategies
83 surface temperature changes
84 target
85 temperature changes
86 uncertainty
87 values
88 years
89 ΔT2x
90 schema:name The impact of potential abrupt climate changes on near-term policy choices
91 schema:pagination 351-376
92 schema:productId N261fbf7d1a64484496acae016e269d21
93 Nf17cf5ba2b94407697149a07d96ad3a6
94 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006954065
95 https://doi.org/10.1007/bf01094402
96 schema:sdDatePublished 2022-06-01T21:59
97 schema:sdLicense https://scigraph.springernature.com/explorer/license/
98 schema:sdPublisher N225f659ea87c43eba7d809660d4a15b1
99 schema:url https://doi.org/10.1007/bf01094402
100 sgo:license sg:explorer/license/
101 sgo:sdDataset articles
102 rdf:type schema:ScholarlyArticle
103 N225f659ea87c43eba7d809660d4a15b1 schema:name Springer Nature - SN SciGraph project
104 rdf:type schema:Organization
105 N261fbf7d1a64484496acae016e269d21 schema:name doi
106 schema:value 10.1007/bf01094402
107 rdf:type schema:PropertyValue
108 N3e47d517930146acaba62a2530d66243 rdf:first sg:person.01326506313.38
109 rdf:rest rdf:nil
110 N943440db498c47ffb1d9ced156b8ffee rdf:first sg:person.01214111434.56
111 rdf:rest Nd9334cc81e8d42fcaae0a561969aa659
112 Nb11811e18df5401b84fcb587a362d299 schema:volumeNumber 26
113 rdf:type schema:PublicationVolume
114 Nd6db436ac5eb42f180ed7665a312be78 schema:issueNumber 4
115 rdf:type schema:PublicationIssue
116 Nd9334cc81e8d42fcaae0a561969aa659 rdf:first sg:person.015755327722.56
117 rdf:rest N3e47d517930146acaba62a2530d66243
118 Nf17cf5ba2b94407697149a07d96ad3a6 schema:name dimensions_id
119 schema:value pub.1006954065
120 rdf:type schema:PropertyValue
121 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
122 schema:name Earth Sciences
123 rdf:type schema:DefinedTerm
124 anzsrc-for:0406 schema:inDefinedTermSet anzsrc-for:
125 schema:name Physical Geography and Environmental Geoscience
126 rdf:type schema:DefinedTerm
127 sg:journal.1028211 schema:issn 0165-0009
128 1573-1480
129 schema:name Climatic Change
130 schema:publisher Springer Nature
131 rdf:type schema:Periodical
132 sg:person.01214111434.56 schema:affiliation grid-institutes:grid.34474.30
133 schema:familyName Lempert
134 schema:givenName Robert J.
135 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01214111434.56
136 rdf:type schema:Person
137 sg:person.01326506313.38 schema:affiliation grid-institutes:grid.38142.3c
138 schema:familyName Hammitt
139 schema:givenName James K.
140 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01326506313.38
141 rdf:type schema:Person
142 sg:person.015755327722.56 schema:affiliation grid-institutes:grid.35403.31
143 schema:familyName Schlesinger
144 schema:givenName Michael E.
145 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015755327722.56
146 rdf:type schema:Person
147 sg:pub.10.1007/978-94-009-0691-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012750287
148 https://doi.org/10.1007/978-94-009-0691-4
149 rdf:type schema:CreativeWork
150 sg:pub.10.1007/bf00134964 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000888475
151 https://doi.org/10.1007/bf00134964
152 rdf:type schema:CreativeWork
153 sg:pub.10.1007/bf01054491 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040451933
154 https://doi.org/10.1007/bf01054491
155 rdf:type schema:CreativeWork
156 sg:pub.10.1038/328123a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047854869
157 https://doi.org/10.1038/328123a0
158 rdf:type schema:CreativeWork
159 sg:pub.10.1038/350219a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011203009
160 https://doi.org/10.1038/350219a0
161 rdf:type schema:CreativeWork
162 sg:pub.10.1038/357293a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027555370
163 https://doi.org/10.1038/357293a0
164 rdf:type schema:CreativeWork
165 sg:pub.10.1038/357315a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011758178
166 https://doi.org/10.1038/357315a0
167 rdf:type schema:CreativeWork
168 sg:pub.10.1038/scientificamerican0990-64 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056600963
169 https://doi.org/10.1038/scientificamerican0990-64
170 rdf:type schema:CreativeWork
171 grid-institutes:grid.34474.30 schema:alternateName RAND Corporation, 1700 Main Street, 90407-2138, Santa Monica, CA, USA
172 schema:name RAND Corporation, 1700 Main Street, 90407-2138, Santa Monica, CA, USA
173 rdf:type schema:Organization
174 grid-institutes:grid.35403.31 schema:alternateName Department of Atmospheric Sciences, University of Illinois at Urbana-Champaign, 105 South Gregory Avenue, 61801, Urbana, IL, USA
175 schema:name Department of Atmospheric Sciences, University of Illinois at Urbana-Champaign, 105 South Gregory Avenue, 61801, Urbana, IL, USA
176 rdf:type schema:Organization
177 grid-institutes:grid.38142.3c schema:alternateName Department of Health Policy and Management, Harvard School of Public Health, 677 Huntington Avenue, 02115, Boston, MA, USA
178 schema:name Department of Health Policy and Management, Harvard School of Public Health, 677 Huntington Avenue, 02115, Boston, MA, USA
179 RAND Corporation, 1700 Main Street, 90407-2138, Santa Monica, CA, USA
180 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...