The impact of potential abrupt climate changes on near-term policy choices View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1994-04

AUTHORS

Robert J. Lempert, Michael E. Schlesinger, James K. Hammitt

ABSTRACT

We investigate an important scientific uncertainty facing climate-change policymakers, namely, the impact of potential abrupt climatic change. We examine sequential decision strategies for abating climate change where near-term policies are viewed as the first of a series of decisions which adapt over the years to improving scientific information. We compare two illustrative near-term (1992–2002) policies - moderate and aggressive emission reductions - followed by a subsequent long-term policy chosen to limit global-mean temperature change to a specified ‘climate target’. We calculate the global-mean surface temperature change using a simple climate/ocean model and simple models of greenhouse-gas concentrations. We alter model parameters to examine the impact of abrupt changes in the sinks of carbon dioxide, the sources of methane, the circulation of the oceans, and the climate sensitivity, ΔT2x. Although the abrupt changes increase the long-term costs of responding to climate change, they do not significantly affect the comparatively small cost difference between near-term strategies. Except for an abrupt increase in ΔT2x, the investigated abrupt climate changes do not significantly alter the values of the climate target for which each near-term strategy is preferred. In contrast, innovations that reduce the cost of limiting greenhouse-gas emissions offer the potential for substantial abatement cost savings, regardless of which level of near-term abatement is selected. More... »

PAGES

351-376

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf01094402

DOI

http://dx.doi.org/10.1007/bf01094402

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1006954065


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Earth Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0406", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Geography and Environmental Geoscience", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "RAND Corporation, 1700 Main Street, 90407-2138, Santa Monica, CA, USA", 
          "id": "http://www.grid.ac/institutes/grid.34474.30", 
          "name": [
            "RAND Corporation, 1700 Main Street, 90407-2138, Santa Monica, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lempert", 
        "givenName": "Robert J.", 
        "id": "sg:person.01214111434.56", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01214111434.56"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Atmospheric Sciences, University of Illinois at Urbana-Champaign, 105 South Gregory Avenue, 61801, Urbana, IL, USA", 
          "id": "http://www.grid.ac/institutes/grid.35403.31", 
          "name": [
            "Department of Atmospheric Sciences, University of Illinois at Urbana-Champaign, 105 South Gregory Avenue, 61801, Urbana, IL, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Schlesinger", 
        "givenName": "Michael E.", 
        "id": "sg:person.015755327722.56", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015755327722.56"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Health Policy and Management, Harvard School of Public Health, 677 Huntington Avenue, 02115, Boston, MA, USA", 
          "id": "http://www.grid.ac/institutes/grid.38142.3c", 
          "name": [
            "RAND Corporation, 1700 Main Street, 90407-2138, Santa Monica, CA, USA", 
            "Department of Health Policy and Management, Harvard School of Public Health, 677 Huntington Avenue, 02115, Boston, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hammitt", 
        "givenName": "James K.", 
        "id": "sg:person.01326506313.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01326506313.38"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/357293a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027555370", 
          "https://doi.org/10.1038/357293a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/357315a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011758178", 
          "https://doi.org/10.1038/357315a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/328123a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047854869", 
          "https://doi.org/10.1038/328123a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/scientificamerican0990-64", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056600963", 
          "https://doi.org/10.1038/scientificamerican0990-64"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-94-009-0691-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012750287", 
          "https://doi.org/10.1007/978-94-009-0691-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01054491", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040451933", 
          "https://doi.org/10.1007/bf01054491"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00134964", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000888475", 
          "https://doi.org/10.1007/bf00134964"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/350219a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011203009", 
          "https://doi.org/10.1038/350219a0"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1994-04", 
    "datePublishedReg": "1994-04-01", 
    "description": "We investigate an important scientific uncertainty facing climate-change policymakers, namely, the impact of potential abrupt climatic change. We examine sequential decision strategies for abating climate change where near-term policies are viewed as the first of a series of decisions which adapt over the years to improving scientific information. We compare two illustrative near-term (1992\u20132002) policies - moderate and aggressive emission reductions - followed by a subsequent long-term policy chosen to limit global-mean temperature change to a specified \u2018climate target\u2019. We calculate the global-mean surface temperature change using a simple climate/ocean model and simple models of greenhouse-gas concentrations. We alter model parameters to examine the impact of abrupt changes in the sinks of carbon dioxide, the sources of methane, the circulation of the oceans, and the climate sensitivity, \u0394T2x. Although the abrupt changes increase the long-term costs of responding to climate change, they do not significantly affect the comparatively small cost difference between near-term strategies. Except for an abrupt increase in \u0394T2x, the investigated abrupt climate changes do not significantly alter the values of the climate target for which each near-term strategy is preferred. In contrast, innovations that reduce the cost of limiting greenhouse-gas emissions offer the potential for substantial abatement cost savings, regardless of which level of near-term abatement is selected.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/bf01094402", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1028211", 
        "issn": [
          "0165-0009", 
          "1573-1480"
        ], 
        "name": "Climatic Change", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "26"
      }
    ], 
    "keywords": [
      "abrupt climate change", 
      "climate change", 
      "global mean surface temperature change", 
      "global mean temperature change", 
      "abrupt climatic changes", 
      "greenhouse gas concentrations", 
      "surface temperature changes", 
      "source of methane", 
      "abrupt changes", 
      "near-term abatement", 
      "temperature changes", 
      "ocean model", 
      "climate sensitivity", 
      "climatic changes", 
      "climate change policymakers", 
      "near-term policies", 
      "near-term strategy", 
      "\u0394T2x", 
      "abrupt increase", 
      "small cost difference", 
      "carbon dioxide", 
      "climate targets", 
      "greenhouse gas emissions", 
      "sequential decision strategy", 
      "abatement cost savings", 
      "Ocean", 
      "model parameters", 
      "scientific uncertainty", 
      "sink", 
      "simple model", 
      "circulation", 
      "changes", 
      "methane", 
      "emission", 
      "impact", 
      "uncertainty", 
      "scientific information", 
      "dioxide", 
      "source", 
      "model", 
      "concentration", 
      "series", 
      "long-term policies", 
      "contrast", 
      "years", 
      "values", 
      "increase", 
      "parameters", 
      "information", 
      "potential", 
      "abatement", 
      "differences", 
      "sensitivity", 
      "levels", 
      "strategies", 
      "policymakers", 
      "target", 
      "policy", 
      "choice", 
      "long-term costs", 
      "decisions", 
      "cost", 
      "policy choices", 
      "decision strategies", 
      "innovation", 
      "series of decisions", 
      "savings", 
      "cost savings", 
      "cost differences"
    ], 
    "name": "The impact of potential abrupt climate changes on near-term policy choices", 
    "pagination": "351-376", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1006954065"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf01094402"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf01094402", 
      "https://app.dimensions.ai/details/publication/pub.1006954065"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-08-04T16:51", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220804/entities/gbq_results/article/article_249.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/bf01094402"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01094402'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01094402'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01094402'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01094402'


 

This table displays all metadata directly associated to this object as RDF triples.

179 TRIPLES      21 PREDICATES      102 URIs      86 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf01094402 schema:about anzsrc-for:04
2 anzsrc-for:0406
3 schema:author N4a0b23ac2a14418d9227b23e3eea0878
4 schema:citation sg:pub.10.1007/978-94-009-0691-4
5 sg:pub.10.1007/bf00134964
6 sg:pub.10.1007/bf01054491
7 sg:pub.10.1038/328123a0
8 sg:pub.10.1038/350219a0
9 sg:pub.10.1038/357293a0
10 sg:pub.10.1038/357315a0
11 sg:pub.10.1038/scientificamerican0990-64
12 schema:datePublished 1994-04
13 schema:datePublishedReg 1994-04-01
14 schema:description We investigate an important scientific uncertainty facing climate-change policymakers, namely, the impact of potential abrupt climatic change. We examine sequential decision strategies for abating climate change where near-term policies are viewed as the first of a series of decisions which adapt over the years to improving scientific information. We compare two illustrative near-term (1992–2002) policies - moderate and aggressive emission reductions - followed by a subsequent long-term policy chosen to limit global-mean temperature change to a specified ‘climate target’. We calculate the global-mean surface temperature change using a simple climate/ocean model and simple models of greenhouse-gas concentrations. We alter model parameters to examine the impact of abrupt changes in the sinks of carbon dioxide, the sources of methane, the circulation of the oceans, and the climate sensitivity, ΔT2x. Although the abrupt changes increase the long-term costs of responding to climate change, they do not significantly affect the comparatively small cost difference between near-term strategies. Except for an abrupt increase in ΔT2x, the investigated abrupt climate changes do not significantly alter the values of the climate target for which each near-term strategy is preferred. In contrast, innovations that reduce the cost of limiting greenhouse-gas emissions offer the potential for substantial abatement cost savings, regardless of which level of near-term abatement is selected.
15 schema:genre article
16 schema:isAccessibleForFree false
17 schema:isPartOf N965fb3c8191d4a2484b11ca43be8f5d1
18 Ndb518acd3e9a4491ad6505983ff62e76
19 sg:journal.1028211
20 schema:keywords Ocean
21 abatement
22 abatement cost savings
23 abrupt changes
24 abrupt climate change
25 abrupt climatic changes
26 abrupt increase
27 carbon dioxide
28 changes
29 choice
30 circulation
31 climate change
32 climate change policymakers
33 climate sensitivity
34 climate targets
35 climatic changes
36 concentration
37 contrast
38 cost
39 cost differences
40 cost savings
41 decision strategies
42 decisions
43 differences
44 dioxide
45 emission
46 global mean surface temperature change
47 global mean temperature change
48 greenhouse gas concentrations
49 greenhouse gas emissions
50 impact
51 increase
52 information
53 innovation
54 levels
55 long-term costs
56 long-term policies
57 methane
58 model
59 model parameters
60 near-term abatement
61 near-term policies
62 near-term strategy
63 ocean model
64 parameters
65 policy
66 policy choices
67 policymakers
68 potential
69 savings
70 scientific information
71 scientific uncertainty
72 sensitivity
73 sequential decision strategy
74 series
75 series of decisions
76 simple model
77 sink
78 small cost difference
79 source
80 source of methane
81 strategies
82 surface temperature changes
83 target
84 temperature changes
85 uncertainty
86 values
87 years
88 ΔT2x
89 schema:name The impact of potential abrupt climate changes on near-term policy choices
90 schema:pagination 351-376
91 schema:productId N0f706ab086f94d99a0d839fbf5606c64
92 N920f8e94d31c496381ae64b2e7b2b7e9
93 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006954065
94 https://doi.org/10.1007/bf01094402
95 schema:sdDatePublished 2022-08-04T16:51
96 schema:sdLicense https://scigraph.springernature.com/explorer/license/
97 schema:sdPublisher N5fc95f9343ad4ce2ab8701e56731a5dd
98 schema:url https://doi.org/10.1007/bf01094402
99 sgo:license sg:explorer/license/
100 sgo:sdDataset articles
101 rdf:type schema:ScholarlyArticle
102 N0f706ab086f94d99a0d839fbf5606c64 schema:name dimensions_id
103 schema:value pub.1006954065
104 rdf:type schema:PropertyValue
105 N4a0b23ac2a14418d9227b23e3eea0878 rdf:first sg:person.01214111434.56
106 rdf:rest Nfee63c0b9a8240789e78465adc3f9be5
107 N5fc95f9343ad4ce2ab8701e56731a5dd schema:name Springer Nature - SN SciGraph project
108 rdf:type schema:Organization
109 N80917ed1b4224d7f81a652d2755d4a74 rdf:first sg:person.01326506313.38
110 rdf:rest rdf:nil
111 N920f8e94d31c496381ae64b2e7b2b7e9 schema:name doi
112 schema:value 10.1007/bf01094402
113 rdf:type schema:PropertyValue
114 N965fb3c8191d4a2484b11ca43be8f5d1 schema:volumeNumber 26
115 rdf:type schema:PublicationVolume
116 Ndb518acd3e9a4491ad6505983ff62e76 schema:issueNumber 4
117 rdf:type schema:PublicationIssue
118 Nfee63c0b9a8240789e78465adc3f9be5 rdf:first sg:person.015755327722.56
119 rdf:rest N80917ed1b4224d7f81a652d2755d4a74
120 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
121 schema:name Earth Sciences
122 rdf:type schema:DefinedTerm
123 anzsrc-for:0406 schema:inDefinedTermSet anzsrc-for:
124 schema:name Physical Geography and Environmental Geoscience
125 rdf:type schema:DefinedTerm
126 sg:journal.1028211 schema:issn 0165-0009
127 1573-1480
128 schema:name Climatic Change
129 schema:publisher Springer Nature
130 rdf:type schema:Periodical
131 sg:person.01214111434.56 schema:affiliation grid-institutes:grid.34474.30
132 schema:familyName Lempert
133 schema:givenName Robert J.
134 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01214111434.56
135 rdf:type schema:Person
136 sg:person.01326506313.38 schema:affiliation grid-institutes:grid.38142.3c
137 schema:familyName Hammitt
138 schema:givenName James K.
139 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01326506313.38
140 rdf:type schema:Person
141 sg:person.015755327722.56 schema:affiliation grid-institutes:grid.35403.31
142 schema:familyName Schlesinger
143 schema:givenName Michael E.
144 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015755327722.56
145 rdf:type schema:Person
146 sg:pub.10.1007/978-94-009-0691-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012750287
147 https://doi.org/10.1007/978-94-009-0691-4
148 rdf:type schema:CreativeWork
149 sg:pub.10.1007/bf00134964 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000888475
150 https://doi.org/10.1007/bf00134964
151 rdf:type schema:CreativeWork
152 sg:pub.10.1007/bf01054491 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040451933
153 https://doi.org/10.1007/bf01054491
154 rdf:type schema:CreativeWork
155 sg:pub.10.1038/328123a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047854869
156 https://doi.org/10.1038/328123a0
157 rdf:type schema:CreativeWork
158 sg:pub.10.1038/350219a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011203009
159 https://doi.org/10.1038/350219a0
160 rdf:type schema:CreativeWork
161 sg:pub.10.1038/357293a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027555370
162 https://doi.org/10.1038/357293a0
163 rdf:type schema:CreativeWork
164 sg:pub.10.1038/357315a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011758178
165 https://doi.org/10.1038/357315a0
166 rdf:type schema:CreativeWork
167 sg:pub.10.1038/scientificamerican0990-64 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056600963
168 https://doi.org/10.1038/scientificamerican0990-64
169 rdf:type schema:CreativeWork
170 grid-institutes:grid.34474.30 schema:alternateName RAND Corporation, 1700 Main Street, 90407-2138, Santa Monica, CA, USA
171 schema:name RAND Corporation, 1700 Main Street, 90407-2138, Santa Monica, CA, USA
172 rdf:type schema:Organization
173 grid-institutes:grid.35403.31 schema:alternateName Department of Atmospheric Sciences, University of Illinois at Urbana-Champaign, 105 South Gregory Avenue, 61801, Urbana, IL, USA
174 schema:name Department of Atmospheric Sciences, University of Illinois at Urbana-Champaign, 105 South Gregory Avenue, 61801, Urbana, IL, USA
175 rdf:type schema:Organization
176 grid-institutes:grid.38142.3c schema:alternateName Department of Health Policy and Management, Harvard School of Public Health, 677 Huntington Avenue, 02115, Boston, MA, USA
177 schema:name Department of Health Policy and Management, Harvard School of Public Health, 677 Huntington Avenue, 02115, Boston, MA, USA
178 RAND Corporation, 1700 Main Street, 90407-2138, Santa Monica, CA, USA
179 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...