The impact of climate change on the river rhine: A scenario study View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1995-08

AUTHORS

Jaap Kwadijk, Jan Rotmans

ABSTRACT

This paper concerns the impact of human-induced global climate change on the River Rhine discharge. For this purpose a model for climate assessment, named ESCAPE, is coupled to a water balance model, named RHINEFLOW. From climate scenarios, changes in regional annual water availability and seasonal discharge in the River Rhine Basin are estimated. The climate scenarios are based on greenhouse gases emissions scenarios. An assessment is made for ‘best guess’ seasonal discharge changes and for changes in frequencies of low and high discharges in the downstream reaches of the river. In addition, a quantitative estimation of the uncertainties associated with this guess is arrived at. The results show that the extent and range of uncertainty is large with respect to the ‘best guess’ changes. The uncertainty range is 2–3 times larger for the Business-as-Usual than for the Accelerated Policies scenarios. This large range stems from the doubtful precipitation simulations from the present General Circulation Models. This scenario study showed the precipitation scenarios to be the key-elements within the present range of reliable climate change scenarios. For the River Rhine ‘best guess’ changes for annual water availability are small according to both scenarios. The river changes from a present combined snow-melt-rain fed river to an almost entirely rain fed river. The difference between present-day large average discharge in winter and the small average discharge in autumn should increase for all scenarios. This trend is largest in the Alpine part of the basin. Here, winter discharges should increase even for scenarios forecasting annual precipitation decreases. Summer discharge should decrease. ‘Best guess’ scenarios should lead to increased frequencies of both low and high flow events in the downstream (Dutch) part of the river. The results indicate changes could be larger than presently assumed in ‘worst case scenarios’ used by the Dutch water management authorities. More... »

PAGES

397-425

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf01093854

DOI

http://dx.doi.org/10.1007/bf01093854

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1019622240


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0406", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Geography and Environmental Geoscience", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Earth Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Utrecht University", 
          "id": "https://www.grid.ac/institutes/grid.5477.1", 
          "name": [
            "University of Utrecht Department of Physical Geography, P.O. Box 80.115, 308 TC, Utrecht, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kwadijk", 
        "givenName": "Jaap", 
        "id": "sg:person.0660335077.69", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0660335077.69"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Institute for Public Health and the Environment", 
          "id": "https://www.grid.ac/institutes/grid.31147.30", 
          "name": [
            "National Institute of Public Health and Environmental Protection (RIVM), P.O. Box 1, 3720 BA, Bilthoven, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rotmans", 
        "givenName": "Jan", 
        "id": "sg:person.01036642443.62", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01036642443.62"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1002/esp.3290160707", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000892216"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/wr023i006p01049", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001438435"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00144508", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004123554", 
          "https://doi.org/10.1007/bf00144508"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00144508", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004123554", 
          "https://doi.org/10.1007/bf00144508"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01093591", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010978136", 
          "https://doi.org/10.1007/bf01093591"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01093591", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010978136", 
          "https://doi.org/10.1007/bf01093591"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-94-009-0691-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012750287", 
          "https://doi.org/10.1007/978-94-009-0691-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-94-009-0691-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012750287", 
          "https://doi.org/10.1007/978-94-009-0691-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-1694(70)90255-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012882666"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-1694(70)90255-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012882666"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-1694(86)90114-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015889783"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-1694(86)90114-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015889783"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/314149a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016124692", 
          "https://doi.org/10.1038/314149a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-1694(84)90159-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020945484"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-1694(84)90159-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020945484"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/joc.3370140604", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026378219"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0959-3780(94)90047-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026972007"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/357293a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027555370", 
          "https://doi.org/10.1038/357293a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/jd092id11p13315", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029188319"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-1694(88)90057-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033098413"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-1694(88)90057-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033098413"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02394196", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036450778", 
          "https://doi.org/10.1007/bf02394196"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0442(1989)002<0459:sccibd>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039786118"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/02626668609491024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045631071"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/312051a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049800938", 
          "https://doi.org/10.1038/312051a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00144611", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050918192", 
          "https://doi.org/10.1007/bf00144611"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00144611", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050918192", 
          "https://doi.org/10.1007/bf00144611"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00140252", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051739549", 
          "https://doi.org/10.1007/bf00140252"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00140252", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051739549", 
          "https://doi.org/10.1007/bf00140252"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1995-08", 
    "datePublishedReg": "1995-08-01", 
    "description": "This paper concerns the impact of human-induced global climate change on the River Rhine discharge. For this purpose a model for climate assessment, named ESCAPE, is coupled to a water balance model, named RHINEFLOW. From climate scenarios, changes in regional annual water availability and seasonal discharge in the River Rhine Basin are estimated. The climate scenarios are based on greenhouse gases emissions scenarios. An assessment is made for \u2018best guess\u2019 seasonal discharge changes and for changes in frequencies of low and high discharges in the downstream reaches of the river. In addition, a quantitative estimation of the uncertainties associated with this guess is arrived at. The results show that the extent and range of uncertainty is large with respect to the \u2018best guess\u2019 changes. The uncertainty range is 2\u20133 times larger for the Business-as-Usual than for the Accelerated Policies scenarios. This large range stems from the doubtful precipitation simulations from the present General Circulation Models. This scenario study showed the precipitation scenarios to be the key-elements within the present range of reliable climate change scenarios. For the River Rhine \u2018best guess\u2019 changes for annual water availability are small according to both scenarios. The river changes from a present combined snow-melt-rain fed river to an almost entirely rain fed river. The difference between present-day large average discharge in winter and the small average discharge in autumn should increase for all scenarios. This trend is largest in the Alpine part of the basin. Here, winter discharges should increase even for scenarios forecasting annual precipitation decreases. Summer discharge should decrease. \u2018Best guess\u2019 scenarios should lead to increased frequencies of both low and high flow events in the downstream (Dutch) part of the river. The results indicate changes could be larger than presently assumed in \u2018worst case scenarios\u2019 used by the Dutch water management authorities.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf01093854", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1028211", 
        "issn": [
          "0165-0009", 
          "1573-1480"
        ], 
        "name": "Climatic Change", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "30"
      }
    ], 
    "name": "The impact of climate change on the river rhine: A scenario study", 
    "pagination": "397-425", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "5d7da01393a2f046862fdd575613e61d1a0cb6df8e03d41cea90c8efde5db86c"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf01093854"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1019622240"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf01093854", 
      "https://app.dimensions.ai/details/publication/pub.1019622240"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:34", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000370_0000000370/records_46772_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/BF01093854"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01093854'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01093854'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01093854'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01093854'


 

This table displays all metadata directly associated to this object as RDF triples.

140 TRIPLES      21 PREDICATES      47 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf01093854 schema:about anzsrc-for:04
2 anzsrc-for:0406
3 schema:author Nf4c009e1b3044798b005ce7f8d5c9987
4 schema:citation sg:pub.10.1007/978-94-009-0691-4
5 sg:pub.10.1007/bf00140252
6 sg:pub.10.1007/bf00144508
7 sg:pub.10.1007/bf00144611
8 sg:pub.10.1007/bf01093591
9 sg:pub.10.1007/bf02394196
10 sg:pub.10.1038/312051a0
11 sg:pub.10.1038/314149a0
12 sg:pub.10.1038/357293a0
13 https://doi.org/10.1002/esp.3290160707
14 https://doi.org/10.1002/joc.3370140604
15 https://doi.org/10.1016/0022-1694(70)90255-6
16 https://doi.org/10.1016/0022-1694(84)90159-8
17 https://doi.org/10.1016/0022-1694(86)90114-9
18 https://doi.org/10.1016/0022-1694(88)90057-1
19 https://doi.org/10.1016/0959-3780(94)90047-7
20 https://doi.org/10.1029/jd092id11p13315
21 https://doi.org/10.1029/wr023i006p01049
22 https://doi.org/10.1080/02626668609491024
23 https://doi.org/10.1175/1520-0442(1989)002<0459:sccibd>2.0.co;2
24 schema:datePublished 1995-08
25 schema:datePublishedReg 1995-08-01
26 schema:description This paper concerns the impact of human-induced global climate change on the River Rhine discharge. For this purpose a model for climate assessment, named ESCAPE, is coupled to a water balance model, named RHINEFLOW. From climate scenarios, changes in regional annual water availability and seasonal discharge in the River Rhine Basin are estimated. The climate scenarios are based on greenhouse gases emissions scenarios. An assessment is made for ‘best guess’ seasonal discharge changes and for changes in frequencies of low and high discharges in the downstream reaches of the river. In addition, a quantitative estimation of the uncertainties associated with this guess is arrived at. The results show that the extent and range of uncertainty is large with respect to the ‘best guess’ changes. The uncertainty range is 2–3 times larger for the Business-as-Usual than for the Accelerated Policies scenarios. This large range stems from the doubtful precipitation simulations from the present General Circulation Models. This scenario study showed the precipitation scenarios to be the key-elements within the present range of reliable climate change scenarios. For the River Rhine ‘best guess’ changes for annual water availability are small according to both scenarios. The river changes from a present combined snow-melt-rain fed river to an almost entirely rain fed river. The difference between present-day large average discharge in winter and the small average discharge in autumn should increase for all scenarios. This trend is largest in the Alpine part of the basin. Here, winter discharges should increase even for scenarios forecasting annual precipitation decreases. Summer discharge should decrease. ‘Best guess’ scenarios should lead to increased frequencies of both low and high flow events in the downstream (Dutch) part of the river. The results indicate changes could be larger than presently assumed in ‘worst case scenarios’ used by the Dutch water management authorities.
27 schema:genre research_article
28 schema:inLanguage en
29 schema:isAccessibleForFree false
30 schema:isPartOf N5eb5bfa6e2844163823af1b0b2b4e3dd
31 Na115cd9577284a6a9958c8c0a3899c7e
32 sg:journal.1028211
33 schema:name The impact of climate change on the river rhine: A scenario study
34 schema:pagination 397-425
35 schema:productId N03653835594d4996ae28d7d28802ba88
36 N2c579bbb2318477aba0ff79c49f513c8
37 Ncf7ea0e9322a4fd79469e30d639dd475
38 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019622240
39 https://doi.org/10.1007/bf01093854
40 schema:sdDatePublished 2019-04-11T13:34
41 schema:sdLicense https://scigraph.springernature.com/explorer/license/
42 schema:sdPublisher Ne4d73ee6cb5d438ba173d8626ccdd207
43 schema:url http://link.springer.com/10.1007/BF01093854
44 sgo:license sg:explorer/license/
45 sgo:sdDataset articles
46 rdf:type schema:ScholarlyArticle
47 N03653835594d4996ae28d7d28802ba88 schema:name readcube_id
48 schema:value 5d7da01393a2f046862fdd575613e61d1a0cb6df8e03d41cea90c8efde5db86c
49 rdf:type schema:PropertyValue
50 N2c579bbb2318477aba0ff79c49f513c8 schema:name dimensions_id
51 schema:value pub.1019622240
52 rdf:type schema:PropertyValue
53 N399ee861b3af4107a40277992dfeeedd rdf:first sg:person.01036642443.62
54 rdf:rest rdf:nil
55 N5eb5bfa6e2844163823af1b0b2b4e3dd schema:volumeNumber 30
56 rdf:type schema:PublicationVolume
57 Na115cd9577284a6a9958c8c0a3899c7e schema:issueNumber 4
58 rdf:type schema:PublicationIssue
59 Ncf7ea0e9322a4fd79469e30d639dd475 schema:name doi
60 schema:value 10.1007/bf01093854
61 rdf:type schema:PropertyValue
62 Ne4d73ee6cb5d438ba173d8626ccdd207 schema:name Springer Nature - SN SciGraph project
63 rdf:type schema:Organization
64 Nf4c009e1b3044798b005ce7f8d5c9987 rdf:first sg:person.0660335077.69
65 rdf:rest N399ee861b3af4107a40277992dfeeedd
66 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
67 schema:name Earth Sciences
68 rdf:type schema:DefinedTerm
69 anzsrc-for:0406 schema:inDefinedTermSet anzsrc-for:
70 schema:name Physical Geography and Environmental Geoscience
71 rdf:type schema:DefinedTerm
72 sg:journal.1028211 schema:issn 0165-0009
73 1573-1480
74 schema:name Climatic Change
75 rdf:type schema:Periodical
76 sg:person.01036642443.62 schema:affiliation https://www.grid.ac/institutes/grid.31147.30
77 schema:familyName Rotmans
78 schema:givenName Jan
79 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01036642443.62
80 rdf:type schema:Person
81 sg:person.0660335077.69 schema:affiliation https://www.grid.ac/institutes/grid.5477.1
82 schema:familyName Kwadijk
83 schema:givenName Jaap
84 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0660335077.69
85 rdf:type schema:Person
86 sg:pub.10.1007/978-94-009-0691-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012750287
87 https://doi.org/10.1007/978-94-009-0691-4
88 rdf:type schema:CreativeWork
89 sg:pub.10.1007/bf00140252 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051739549
90 https://doi.org/10.1007/bf00140252
91 rdf:type schema:CreativeWork
92 sg:pub.10.1007/bf00144508 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004123554
93 https://doi.org/10.1007/bf00144508
94 rdf:type schema:CreativeWork
95 sg:pub.10.1007/bf00144611 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050918192
96 https://doi.org/10.1007/bf00144611
97 rdf:type schema:CreativeWork
98 sg:pub.10.1007/bf01093591 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010978136
99 https://doi.org/10.1007/bf01093591
100 rdf:type schema:CreativeWork
101 sg:pub.10.1007/bf02394196 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036450778
102 https://doi.org/10.1007/bf02394196
103 rdf:type schema:CreativeWork
104 sg:pub.10.1038/312051a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049800938
105 https://doi.org/10.1038/312051a0
106 rdf:type schema:CreativeWork
107 sg:pub.10.1038/314149a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016124692
108 https://doi.org/10.1038/314149a0
109 rdf:type schema:CreativeWork
110 sg:pub.10.1038/357293a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027555370
111 https://doi.org/10.1038/357293a0
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1002/esp.3290160707 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000892216
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1002/joc.3370140604 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026378219
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1016/0022-1694(70)90255-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012882666
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1016/0022-1694(84)90159-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020945484
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1016/0022-1694(86)90114-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015889783
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1016/0022-1694(88)90057-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033098413
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1016/0959-3780(94)90047-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026972007
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1029/jd092id11p13315 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029188319
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1029/wr023i006p01049 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001438435
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1080/02626668609491024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045631071
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1175/1520-0442(1989)002<0459:sccibd>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039786118
134 rdf:type schema:CreativeWork
135 https://www.grid.ac/institutes/grid.31147.30 schema:alternateName National Institute for Public Health and the Environment
136 schema:name National Institute of Public Health and Environmental Protection (RIVM), P.O. Box 1, 3720 BA, Bilthoven, The Netherlands
137 rdf:type schema:Organization
138 https://www.grid.ac/institutes/grid.5477.1 schema:alternateName Utrecht University
139 schema:name University of Utrecht Department of Physical Geography, P.O. Box 80.115, 308 TC, Utrecht, The Netherlands
140 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...