Excited-state absorption in Er: BaY2F8 and Cs3Er2Br9 and comparison with Er: LiYF4 View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

1996-04

AUTHORS

M. Pollnau, W. Lüthy, H. P. Weber, K. Krämer, H. U. Güdel, R. A. McFarlane

ABSTRACT

The influence of Excited-State Absorption (ESA) on the green laser transition and the overlap of Ground-State Absorption (GSA) and ESA for 970 nm upconversion pumping in erbium is investigated in Er3+ : BaY2F8 and Cs3Er2Br9. Results are compared to Er3+ : LiYF4. In Er3+: BaY2F8, a good overlap between GSA and ESA is found at 969 nm in one polarization direction. The emission cross section at 550 nm is a factor of two smaller than in LiYF4. In Cs3Er2Br9, the smaller Stark splitting of the levels shifts the wavelengths of the green emission and ESA from4I1 3/2 off resonance. It enhances, however, ground-state reabsorption. The emission cross section at 550 nm is comparable to LiYF4. Upconversion leads to significant green fluorescence from2H9/2. A significant population of the4I11/2 level and ESA at 970 nm are not present under 800 nm pumping. More... »

PAGES

339-344

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf01081195

DOI

http://dx.doi.org/10.1007/bf01081195

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1046956414


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0205", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Optical Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0906", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Electrical and Electronic Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0913", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mechanical Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institute of Applied Physics, University of Berne, Sidlerstrasse 5, CH-3012, Berne, Switzerland", 
          "id": "http://www.grid.ac/institutes/grid.5734.5", 
          "name": [
            "Institute of Applied Physics, University of Berne, Sidlerstrasse 5, CH-3012, Berne, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pollnau", 
        "givenName": "M.", 
        "id": "sg:person.01111167504.59", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01111167504.59"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Applied Physics, University of Berne, Sidlerstrasse 5, CH-3012, Berne, Switzerland", 
          "id": "http://www.grid.ac/institutes/grid.5734.5", 
          "name": [
            "Institute of Applied Physics, University of Berne, Sidlerstrasse 5, CH-3012, Berne, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "L\u00fcthy", 
        "givenName": "W.", 
        "id": "sg:person.01205633747.33", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01205633747.33"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Applied Physics, University of Berne, Sidlerstrasse 5, CH-3012, Berne, Switzerland", 
          "id": "http://www.grid.ac/institutes/grid.5734.5", 
          "name": [
            "Institute of Applied Physics, University of Berne, Sidlerstrasse 5, CH-3012, Berne, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Weber", 
        "givenName": "H. P.", 
        "id": "sg:person.0771514137.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0771514137.17"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Inorganic Chemistry, University of Berne, Freiestrasse 3, CH-3009, Berne, Switzerland", 
          "id": "http://www.grid.ac/institutes/grid.5734.5", 
          "name": [
            "Institute of Inorganic Chemistry, University of Berne, Freiestrasse 3, CH-3009, Berne, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kr\u00e4mer", 
        "givenName": "K.", 
        "id": "sg:person.01242272700.32", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01242272700.32"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Inorganic Chemistry, University of Berne, Freiestrasse 3, CH-3009, Berne, Switzerland", 
          "id": "http://www.grid.ac/institutes/grid.5734.5", 
          "name": [
            "Institute of Inorganic Chemistry, University of Berne, Freiestrasse 3, CH-3009, Berne, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "G\u00fcdel", 
        "givenName": "H. U.", 
        "id": "sg:person.013252041475.51", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013252041475.51"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hughes Research Laboratories, 3011 Malibu Canyon Road, 90265, Malibu, CA, USA", 
          "id": "http://www.grid.ac/institutes/grid.435086.c", 
          "name": [
            "Hughes Research Laboratories, 3011 Malibu Canyon Road, 90265, Malibu, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "McFarlane", 
        "givenName": "R. A.", 
        "id": "sg:person.015340413630.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015340413630.22"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf00324164", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019849998", 
          "https://doi.org/10.1007/bf00324164"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01090936", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030244287", 
          "https://doi.org/10.1007/bf01090936"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1996-04", 
    "datePublishedReg": "1996-04-01", 
    "description": "The influence of Excited-State Absorption (ESA) on the green laser transition and the overlap of Ground-State Absorption (GSA) and ESA for 970 nm upconversion pumping in erbium is investigated in Er3+ : BaY2F8 and Cs3Er2Br9. Results are compared to Er3+ : LiYF4. In Er3+: BaY2F8, a good overlap between GSA and ESA is found at 969 nm in one polarization direction. The emission cross section at 550 nm is a factor of two smaller than in LiYF4. In Cs3Er2Br9, the smaller Stark splitting of the levels shifts the wavelengths of the green emission and ESA from4I1 3/2 off resonance. It enhances, however, ground-state reabsorption. The emission cross section at 550 nm is comparable to LiYF4. Upconversion leads to significant green fluorescence from2H9/2. A significant population of the4I11/2 level and ESA at 970 nm are not present under 800 nm pumping.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/bf01081195", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1312262", 
        "issn": [
          "0946-2171", 
          "1432-0649"
        ], 
        "name": "Applied Physics B", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "62"
      }
    ], 
    "keywords": [
      "reabsorption", 
      "levels", 
      "ER", 
      "population", 
      "significant population", 
      "factors", 
      "overlap", 
      "sections", 
      "absorption", 
      "comparison", 
      "results", 
      "ESA", 
      "influence", 
      "resonance", 
      "ground-state absorption", 
      "emission cross section", 
      "good overlap", 
      "direction", 
      "cross sections", 
      "excited state absorption", 
      "ground state reabsorption", 
      "state absorption", 
      "laser transition", 
      "transition", 
      "Stark splitting", 
      "polarization direction", 
      "green emission", 
      "erbium", 
      "Er3", 
      "BaY2F8", 
      "LiYF4", 
      "upconversion", 
      "wavelength", 
      "splitting", 
      "emission"
    ], 
    "name": "Excited-state absorption in Er: BaY2F8 and Cs3Er2Br9 and comparison with Er: LiYF4", 
    "pagination": "339-344", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1046956414"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf01081195"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf01081195", 
      "https://app.dimensions.ai/details/publication/pub.1046956414"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-09-02T15:49", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_299.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/bf01081195"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01081195'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01081195'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01081195'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01081195'


 

This table displays all metadata directly associated to this object as RDF triples.

152 TRIPLES      21 PREDICATES      65 URIs      52 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf01081195 schema:about anzsrc-for:02
2 anzsrc-for:0205
3 anzsrc-for:09
4 anzsrc-for:0906
5 anzsrc-for:0913
6 schema:author N2af02a02d3b942dfbfe5079f2d5a37d7
7 schema:citation sg:pub.10.1007/bf00324164
8 sg:pub.10.1007/bf01090936
9 schema:datePublished 1996-04
10 schema:datePublishedReg 1996-04-01
11 schema:description The influence of Excited-State Absorption (ESA) on the green laser transition and the overlap of Ground-State Absorption (GSA) and ESA for 970 nm upconversion pumping in erbium is investigated in Er3+ : BaY2F8 and Cs3Er2Br9. Results are compared to Er3+ : LiYF4. In Er3+: BaY2F8, a good overlap between GSA and ESA is found at 969 nm in one polarization direction. The emission cross section at 550 nm is a factor of two smaller than in LiYF4. In Cs3Er2Br9, the smaller Stark splitting of the levels shifts the wavelengths of the green emission and ESA from4I1 3/2 off resonance. It enhances, however, ground-state reabsorption. The emission cross section at 550 nm is comparable to LiYF4. Upconversion leads to significant green fluorescence from2H9/2. A significant population of the4I11/2 level and ESA at 970 nm are not present under 800 nm pumping.
12 schema:genre article
13 schema:isAccessibleForFree true
14 schema:isPartOf N7acecfdff2b244ab89835c22ba4f51bf
15 Ne063e947f57646a5833dc443794a5e9e
16 sg:journal.1312262
17 schema:keywords BaY2F8
18 ER
19 ESA
20 Er3
21 LiYF4
22 Stark splitting
23 absorption
24 comparison
25 cross sections
26 direction
27 emission
28 emission cross section
29 erbium
30 excited state absorption
31 factors
32 good overlap
33 green emission
34 ground state reabsorption
35 ground-state absorption
36 influence
37 laser transition
38 levels
39 overlap
40 polarization direction
41 population
42 reabsorption
43 resonance
44 results
45 sections
46 significant population
47 splitting
48 state absorption
49 transition
50 upconversion
51 wavelength
52 schema:name Excited-state absorption in Er: BaY2F8 and Cs3Er2Br9 and comparison with Er: LiYF4
53 schema:pagination 339-344
54 schema:productId N05fcd1f6de3e44b1b475cd61e8346009
55 N308eaaaa9aa143a99c8a95d04662ec18
56 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046956414
57 https://doi.org/10.1007/bf01081195
58 schema:sdDatePublished 2022-09-02T15:49
59 schema:sdLicense https://scigraph.springernature.com/explorer/license/
60 schema:sdPublisher N97a67df340e9464199747255e1c14158
61 schema:url https://doi.org/10.1007/bf01081195
62 sgo:license sg:explorer/license/
63 sgo:sdDataset articles
64 rdf:type schema:ScholarlyArticle
65 N05fcd1f6de3e44b1b475cd61e8346009 schema:name dimensions_id
66 schema:value pub.1046956414
67 rdf:type schema:PropertyValue
68 N2af02a02d3b942dfbfe5079f2d5a37d7 rdf:first sg:person.01111167504.59
69 rdf:rest Ndc102402cc214dbdb60c924f1e6a247f
70 N308eaaaa9aa143a99c8a95d04662ec18 schema:name doi
71 schema:value 10.1007/bf01081195
72 rdf:type schema:PropertyValue
73 N3e83b6fb03324af38277db70c037ed33 rdf:first sg:person.015340413630.22
74 rdf:rest rdf:nil
75 N7acecfdff2b244ab89835c22ba4f51bf schema:issueNumber 4
76 rdf:type schema:PublicationIssue
77 N7c359c71ccc341edad331759af2292be rdf:first sg:person.01242272700.32
78 rdf:rest Nb3b37c7caf8f45eaa57abe61fee8d987
79 N97a67df340e9464199747255e1c14158 schema:name Springer Nature - SN SciGraph project
80 rdf:type schema:Organization
81 Nb3b37c7caf8f45eaa57abe61fee8d987 rdf:first sg:person.013252041475.51
82 rdf:rest N3e83b6fb03324af38277db70c037ed33
83 Ndc102402cc214dbdb60c924f1e6a247f rdf:first sg:person.01205633747.33
84 rdf:rest Ne7ceb8c4db44412f8dbdd69a16080b40
85 Ne063e947f57646a5833dc443794a5e9e schema:volumeNumber 62
86 rdf:type schema:PublicationVolume
87 Ne7ceb8c4db44412f8dbdd69a16080b40 rdf:first sg:person.0771514137.17
88 rdf:rest N7c359c71ccc341edad331759af2292be
89 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
90 schema:name Physical Sciences
91 rdf:type schema:DefinedTerm
92 anzsrc-for:0205 schema:inDefinedTermSet anzsrc-for:
93 schema:name Optical Physics
94 rdf:type schema:DefinedTerm
95 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
96 schema:name Engineering
97 rdf:type schema:DefinedTerm
98 anzsrc-for:0906 schema:inDefinedTermSet anzsrc-for:
99 schema:name Electrical and Electronic Engineering
100 rdf:type schema:DefinedTerm
101 anzsrc-for:0913 schema:inDefinedTermSet anzsrc-for:
102 schema:name Mechanical Engineering
103 rdf:type schema:DefinedTerm
104 sg:journal.1312262 schema:issn 0946-2171
105 1432-0649
106 schema:name Applied Physics B
107 schema:publisher Springer Nature
108 rdf:type schema:Periodical
109 sg:person.01111167504.59 schema:affiliation grid-institutes:grid.5734.5
110 schema:familyName Pollnau
111 schema:givenName M.
112 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01111167504.59
113 rdf:type schema:Person
114 sg:person.01205633747.33 schema:affiliation grid-institutes:grid.5734.5
115 schema:familyName Lüthy
116 schema:givenName W.
117 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01205633747.33
118 rdf:type schema:Person
119 sg:person.01242272700.32 schema:affiliation grid-institutes:grid.5734.5
120 schema:familyName Krämer
121 schema:givenName K.
122 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01242272700.32
123 rdf:type schema:Person
124 sg:person.013252041475.51 schema:affiliation grid-institutes:grid.5734.5
125 schema:familyName Güdel
126 schema:givenName H. U.
127 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013252041475.51
128 rdf:type schema:Person
129 sg:person.015340413630.22 schema:affiliation grid-institutes:grid.435086.c
130 schema:familyName McFarlane
131 schema:givenName R. A.
132 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015340413630.22
133 rdf:type schema:Person
134 sg:person.0771514137.17 schema:affiliation grid-institutes:grid.5734.5
135 schema:familyName Weber
136 schema:givenName H. P.
137 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0771514137.17
138 rdf:type schema:Person
139 sg:pub.10.1007/bf00324164 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019849998
140 https://doi.org/10.1007/bf00324164
141 rdf:type schema:CreativeWork
142 sg:pub.10.1007/bf01090936 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030244287
143 https://doi.org/10.1007/bf01090936
144 rdf:type schema:CreativeWork
145 grid-institutes:grid.435086.c schema:alternateName Hughes Research Laboratories, 3011 Malibu Canyon Road, 90265, Malibu, CA, USA
146 schema:name Hughes Research Laboratories, 3011 Malibu Canyon Road, 90265, Malibu, CA, USA
147 rdf:type schema:Organization
148 grid-institutes:grid.5734.5 schema:alternateName Institute of Applied Physics, University of Berne, Sidlerstrasse 5, CH-3012, Berne, Switzerland
149 Institute of Inorganic Chemistry, University of Berne, Freiestrasse 3, CH-3009, Berne, Switzerland
150 schema:name Institute of Applied Physics, University of Berne, Sidlerstrasse 5, CH-3012, Berne, Switzerland
151 Institute of Inorganic Chemistry, University of Berne, Freiestrasse 3, CH-3009, Berne, Switzerland
152 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...