The two-dimensional Navier-Stokes equations with a large-scale instability of the Kuramoto-Sivashinsky type: Numerical exploration on the Connection Machine View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1991-12

AUTHORS

S. Gama, U. Frisch, H. Scholl

ABSTRACT

The two-dimensional Navier-Stokes equations with a large-scale instability of the Kuramoto-Sivashinsky type, describing marginally negative eddy-viscosity situations, is simulated on a Connection Machine CM-2. Up to millions of time steps at the resolution 2562 and tens of thousands at the resolution 10242 are performed. Advantage is taken of a novel complex variable form of the two-dimensional Navier-Stokes equations, which requires only two complex FFTs per time step. A linear growth phase, a disorganized inverse cascade phase, and a structured vortical phase are successively observed. In the vortical phase monopolar and multipolar structures are proliferating and display strongly depleted nonlinearities. More... »

PAGES

425-452

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf01060033

DOI

http://dx.doi.org/10.1007/bf01060033

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1001420060


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Porto", 
          "id": "https://www.grid.ac/institutes/grid.5808.5", 
          "name": [
            "C.N.R.S., Observatoire de Nice, B.P. 229, 06304, Nice Cedex 4, France", 
            "F.E.U.P., Universidade do Porto, 4000, R. Bragas, Porto, Portugal"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gama", 
        "givenName": "S.", 
        "id": "sg:person.010410056655.71", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010410056655.71"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "French National Centre for Scientific Research", 
          "id": "https://www.grid.ac/institutes/grid.4444.0", 
          "name": [
            "C.N.R.S., Observatoire de Nice, B.P. 229, 06304, Nice Cedex 4, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Frisch", 
        "givenName": "U.", 
        "id": "sg:person.011615073661.47", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011615073661.47"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "French National Centre for Scientific Research", 
          "id": "https://www.grid.ac/institutes/grid.4444.0", 
          "name": [
            "C.N.R.S., Observatoire de Nice, B.P. 229, 06304, Nice Cedex 4, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Scholl", 
        "givenName": "H.", 
        "id": "sg:person.014356351654.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014356351654.48"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/0021-9991(83)90064-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003690218"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0021-9991(77)90023-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012383285"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0469(1981)038<2305:asobmf>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015469926"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-94-009-3545-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032402883", 
          "https://doi.org/10.1007/978-94-009-3545-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-94-009-3545-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032402883", 
          "https://doi.org/10.1007/978-94-009-3545-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0021-8928(62)90149-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035557773"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0021-8928(62)90149-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035557773"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0167-2789(91)90088-q", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052192198"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0167-2789(91)90088-q", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052192198"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0022112086000356", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054026100"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0022112084001750", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054028893"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1762301", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057817349"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4822889", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058083508"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.857393", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058110598"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.864870", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058118062"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.881235", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058126717"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.43.5355", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060483329"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.43.5355", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060483329"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1209/0295-5075/5/1/007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064231017"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/1.9781611970425", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098556634"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1991-12", 
    "datePublishedReg": "1991-12-01", 
    "description": "The two-dimensional Navier-Stokes equations with a large-scale instability of the Kuramoto-Sivashinsky type, describing marginally negative eddy-viscosity situations, is simulated on a Connection Machine CM-2. Up to millions of time steps at the resolution 2562 and tens of thousands at the resolution 10242 are performed. Advantage is taken of a novel complex variable form of the two-dimensional Navier-Stokes equations, which requires only two complex FFTs per time step. A linear growth phase, a disorganized inverse cascade phase, and a structured vortical phase are successively observed. In the vortical phase monopolar and multipolar structures are proliferating and display strongly depleted nonlinearities.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf01060033", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1126163", 
        "issn": [
          "0885-7474", 
          "1573-7691"
        ], 
        "name": "Journal of Scientific Computing", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "6"
      }
    ], 
    "name": "The two-dimensional Navier-Stokes equations with a large-scale instability of the Kuramoto-Sivashinsky type: Numerical exploration on the Connection Machine", 
    "pagination": "425-452", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "06c3ef9e88f130923289b55fd09e765d88c12ad30a40a60c91f58e8a3ad6c788"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf01060033"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1001420060"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf01060033", 
      "https://app.dimensions.ai/details/publication/pub.1001420060"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:32", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000370_0000000370/records_46765_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2FBF01060033"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01060033'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01060033'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01060033'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01060033'


 

This table displays all metadata directly associated to this object as RDF triples.

128 TRIPLES      21 PREDICATES      43 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf01060033 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author Nf3600b6365eb4506b6a5b5f28325b067
4 schema:citation sg:pub.10.1007/978-94-009-3545-7
5 https://doi.org/10.1016/0021-8928(62)90149-1
6 https://doi.org/10.1016/0021-9991(77)90023-7
7 https://doi.org/10.1016/0021-9991(83)90064-5
8 https://doi.org/10.1016/0167-2789(91)90088-q
9 https://doi.org/10.1017/s0022112084001750
10 https://doi.org/10.1017/s0022112086000356
11 https://doi.org/10.1063/1.1762301
12 https://doi.org/10.1063/1.4822889
13 https://doi.org/10.1063/1.857393
14 https://doi.org/10.1063/1.864870
15 https://doi.org/10.1063/1.881235
16 https://doi.org/10.1103/physreva.43.5355
17 https://doi.org/10.1137/1.9781611970425
18 https://doi.org/10.1175/1520-0469(1981)038<2305:asobmf>2.0.co;2
19 https://doi.org/10.1209/0295-5075/5/1/007
20 schema:datePublished 1991-12
21 schema:datePublishedReg 1991-12-01
22 schema:description The two-dimensional Navier-Stokes equations with a large-scale instability of the Kuramoto-Sivashinsky type, describing marginally negative eddy-viscosity situations, is simulated on a Connection Machine CM-2. Up to millions of time steps at the resolution 2562 and tens of thousands at the resolution 10242 are performed. Advantage is taken of a novel complex variable form of the two-dimensional Navier-Stokes equations, which requires only two complex FFTs per time step. A linear growth phase, a disorganized inverse cascade phase, and a structured vortical phase are successively observed. In the vortical phase monopolar and multipolar structures are proliferating and display strongly depleted nonlinearities.
23 schema:genre research_article
24 schema:inLanguage en
25 schema:isAccessibleForFree false
26 schema:isPartOf N1d147ccf4f0b4b00adba58f761345cc1
27 N41a517c3c2254dc7814df1f81c7d1983
28 sg:journal.1126163
29 schema:name The two-dimensional Navier-Stokes equations with a large-scale instability of the Kuramoto-Sivashinsky type: Numerical exploration on the Connection Machine
30 schema:pagination 425-452
31 schema:productId N4d8a943402e14f77a5427b783b37049b
32 N7d664b4a785841e9a5b02962486e1489
33 Naa9a1dad12b346b69c8cc2ae08984466
34 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001420060
35 https://doi.org/10.1007/bf01060033
36 schema:sdDatePublished 2019-04-11T13:32
37 schema:sdLicense https://scigraph.springernature.com/explorer/license/
38 schema:sdPublisher Nb3f47539934d44709f65bf212add0929
39 schema:url http://link.springer.com/10.1007%2FBF01060033
40 sgo:license sg:explorer/license/
41 sgo:sdDataset articles
42 rdf:type schema:ScholarlyArticle
43 N1d147ccf4f0b4b00adba58f761345cc1 schema:volumeNumber 6
44 rdf:type schema:PublicationVolume
45 N41a517c3c2254dc7814df1f81c7d1983 schema:issueNumber 4
46 rdf:type schema:PublicationIssue
47 N443ea694f1d844ea90f7c2ff0b3eb6ae rdf:first sg:person.011615073661.47
48 rdf:rest Nd99e7f692f484c93bf385ff943417bd7
49 N4d8a943402e14f77a5427b783b37049b schema:name dimensions_id
50 schema:value pub.1001420060
51 rdf:type schema:PropertyValue
52 N7d664b4a785841e9a5b02962486e1489 schema:name doi
53 schema:value 10.1007/bf01060033
54 rdf:type schema:PropertyValue
55 Naa9a1dad12b346b69c8cc2ae08984466 schema:name readcube_id
56 schema:value 06c3ef9e88f130923289b55fd09e765d88c12ad30a40a60c91f58e8a3ad6c788
57 rdf:type schema:PropertyValue
58 Nb3f47539934d44709f65bf212add0929 schema:name Springer Nature - SN SciGraph project
59 rdf:type schema:Organization
60 Nd99e7f692f484c93bf385ff943417bd7 rdf:first sg:person.014356351654.48
61 rdf:rest rdf:nil
62 Nf3600b6365eb4506b6a5b5f28325b067 rdf:first sg:person.010410056655.71
63 rdf:rest N443ea694f1d844ea90f7c2ff0b3eb6ae
64 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
65 schema:name Information and Computing Sciences
66 rdf:type schema:DefinedTerm
67 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
68 schema:name Artificial Intelligence and Image Processing
69 rdf:type schema:DefinedTerm
70 sg:journal.1126163 schema:issn 0885-7474
71 1573-7691
72 schema:name Journal of Scientific Computing
73 rdf:type schema:Periodical
74 sg:person.010410056655.71 schema:affiliation https://www.grid.ac/institutes/grid.5808.5
75 schema:familyName Gama
76 schema:givenName S.
77 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010410056655.71
78 rdf:type schema:Person
79 sg:person.011615073661.47 schema:affiliation https://www.grid.ac/institutes/grid.4444.0
80 schema:familyName Frisch
81 schema:givenName U.
82 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011615073661.47
83 rdf:type schema:Person
84 sg:person.014356351654.48 schema:affiliation https://www.grid.ac/institutes/grid.4444.0
85 schema:familyName Scholl
86 schema:givenName H.
87 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014356351654.48
88 rdf:type schema:Person
89 sg:pub.10.1007/978-94-009-3545-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032402883
90 https://doi.org/10.1007/978-94-009-3545-7
91 rdf:type schema:CreativeWork
92 https://doi.org/10.1016/0021-8928(62)90149-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035557773
93 rdf:type schema:CreativeWork
94 https://doi.org/10.1016/0021-9991(77)90023-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012383285
95 rdf:type schema:CreativeWork
96 https://doi.org/10.1016/0021-9991(83)90064-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003690218
97 rdf:type schema:CreativeWork
98 https://doi.org/10.1016/0167-2789(91)90088-q schema:sameAs https://app.dimensions.ai/details/publication/pub.1052192198
99 rdf:type schema:CreativeWork
100 https://doi.org/10.1017/s0022112084001750 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054028893
101 rdf:type schema:CreativeWork
102 https://doi.org/10.1017/s0022112086000356 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054026100
103 rdf:type schema:CreativeWork
104 https://doi.org/10.1063/1.1762301 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057817349
105 rdf:type schema:CreativeWork
106 https://doi.org/10.1063/1.4822889 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058083508
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1063/1.857393 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058110598
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1063/1.864870 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058118062
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1063/1.881235 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058126717
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1103/physreva.43.5355 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060483329
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1137/1.9781611970425 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098556634
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1175/1520-0469(1981)038<2305:asobmf>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015469926
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1209/0295-5075/5/1/007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064231017
121 rdf:type schema:CreativeWork
122 https://www.grid.ac/institutes/grid.4444.0 schema:alternateName French National Centre for Scientific Research
123 schema:name C.N.R.S., Observatoire de Nice, B.P. 229, 06304, Nice Cedex 4, France
124 rdf:type schema:Organization
125 https://www.grid.ac/institutes/grid.5808.5 schema:alternateName University of Porto
126 schema:name C.N.R.S., Observatoire de Nice, B.P. 229, 06304, Nice Cedex 4, France
127 F.E.U.P., Universidade do Porto, 4000, R. Bragas, Porto, Portugal
128 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...