Exponential stability of states close to resonance in infinite-dimensional Hamiltonian systems View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1993-05

AUTHORS

Dario Bambusi, Antonio Giorgilli

ABSTRACT

We develop canonical perturbation theory for a physically interesting class of infinite-dimensional systems. We prove stability up to exponentially large times for dynamical situations characterized by a finite number of frequencies. An application to two model problems is also made. For an arbitrarily large FPU-like system with alternate light and heavy masses we prove that the exchange of energy between the optical and the acoustical modes is frozen up to exponentially large times, provided the total energy is small enough. For an infinite chain of weakly coupled rotators we prove exponential stability for two kinds of initial data: (a) states with a finite number of excited rotators, and (b) states with the left part of the chain uniformly excited and the right part at rest. More... »

PAGES

569-606

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf01058438

DOI

http://dx.doi.org/10.1007/bf01058438

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1003681860


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Applied Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "Dipartimento di Matematica dell'Universit\u00e0, 20133, Milano, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bambusi", 
        "givenName": "Dario", 
        "id": "sg:person.013165751557.27", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013165751557.27"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Dipartimento di Matematica dell'Universit\u00e0, 20133, Milano, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Giorgilli", 
        "givenName": "Antonio", 
        "id": "sg:person.010532704656.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010532704656.30"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1002/cpa.3160230406", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000879061"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cpa.3160230406", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000879061"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1003940502", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1003940502", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02104499", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011338124", 
          "https://doi.org/10.1007/bf02104499"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02104499", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011338124", 
          "https://doi.org/10.1007/bf02104499"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0021-8928(89)90002-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015018047"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0021-8928(89)90002-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015018047"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01218262", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020365094", 
          "https://doi.org/10.1007/bf01218262"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01218262", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020365094", 
          "https://doi.org/10.1007/bf01218262"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01214577", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021617332", 
          "https://doi.org/10.1007/bf01214577"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01214577", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021617332", 
          "https://doi.org/10.1007/bf01214577"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02723540", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027238174", 
          "https://doi.org/10.1007/bf02723540"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01232832", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028824895", 
          "https://doi.org/10.1007/bf01232832"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01232832", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028824895", 
          "https://doi.org/10.1007/bf01232832"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02723539", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030151468", 
          "https://doi.org/10.1007/bf02723539"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01127712", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034044964", 
          "https://doi.org/10.1007/bf01127712"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01127712", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034044964", 
          "https://doi.org/10.1007/bf01127712"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01211753", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044928177", 
          "https://doi.org/10.1007/bf01211753"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01211753", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044928177", 
          "https://doi.org/10.1007/bf01211753"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4684-0265-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044940296", 
          "https://doi.org/10.1007/978-1-4684-0265-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4684-0265-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044940296", 
          "https://doi.org/10.1007/978-1-4684-0265-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02096763", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048162865", 
          "https://doi.org/10.1007/bf02096763"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02096763", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048162865", 
          "https://doi.org/10.1007/bf02096763"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0167-2789(92)90074-w", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048657814"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0167-2789(92)90074-w", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048657814"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01218157", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051921197", 
          "https://doi.org/10.1007/bf01218157"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01218157", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051921197", 
          "https://doi.org/10.1007/bf01218157"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1993-05", 
    "datePublishedReg": "1993-05-01", 
    "description": "We develop canonical perturbation theory for a physically interesting class of infinite-dimensional systems. We prove stability up to exponentially large times for dynamical situations characterized by a finite number of frequencies. An application to two model problems is also made. For an arbitrarily large FPU-like system with alternate light and heavy masses we prove that the exchange of energy between the optical and the acoustical modes is frozen up to exponentially large times, provided the total energy is small enough. For an infinite chain of weakly coupled rotators we prove exponential stability for two kinds of initial data: (a) states with a finite number of excited rotators, and (b) states with the left part of the chain uniformly excited and the right part at rest.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf01058438", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1040979", 
        "issn": [
          "0022-4715", 
          "1572-9613"
        ], 
        "name": "Journal of Statistical Physics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3-4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "71"
      }
    ], 
    "name": "Exponential stability of states close to resonance in infinite-dimensional Hamiltonian systems", 
    "pagination": "569-606", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "1189f30a1da92245f70837cf462a62fcd127197e09a42786ac19349d36496bd7"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf01058438"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1003681860"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf01058438", 
      "https://app.dimensions.ai/details/publication/pub.1003681860"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T17:27", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8672_00000494.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/BF01058438"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01058438'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01058438'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01058438'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01058438'


 

This table displays all metadata directly associated to this object as RDF triples.

124 TRIPLES      21 PREDICATES      42 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf01058438 schema:about anzsrc-for:01
2 anzsrc-for:0102
3 schema:author N3f983d6ae37645e08def7cdaca01ef5c
4 schema:citation sg:pub.10.1007/978-1-4684-0265-0
5 sg:pub.10.1007/bf01127712
6 sg:pub.10.1007/bf01211753
7 sg:pub.10.1007/bf01214577
8 sg:pub.10.1007/bf01218157
9 sg:pub.10.1007/bf01218262
10 sg:pub.10.1007/bf01232832
11 sg:pub.10.1007/bf02096763
12 sg:pub.10.1007/bf02104499
13 sg:pub.10.1007/bf02723539
14 sg:pub.10.1007/bf02723540
15 https://app.dimensions.ai/details/publication/pub.1003940502
16 https://doi.org/10.1002/cpa.3160230406
17 https://doi.org/10.1016/0021-8928(89)90002-6
18 https://doi.org/10.1016/0167-2789(92)90074-w
19 schema:datePublished 1993-05
20 schema:datePublishedReg 1993-05-01
21 schema:description We develop canonical perturbation theory for a physically interesting class of infinite-dimensional systems. We prove stability up to exponentially large times for dynamical situations characterized by a finite number of frequencies. An application to two model problems is also made. For an arbitrarily large FPU-like system with alternate light and heavy masses we prove that the exchange of energy between the optical and the acoustical modes is frozen up to exponentially large times, provided the total energy is small enough. For an infinite chain of weakly coupled rotators we prove exponential stability for two kinds of initial data: (a) states with a finite number of excited rotators, and (b) states with the left part of the chain uniformly excited and the right part at rest.
22 schema:genre research_article
23 schema:inLanguage en
24 schema:isAccessibleForFree false
25 schema:isPartOf Na600af001a384f3cae5337d33731d0d2
26 Nf945b1fd0f864f2d9f48e32631618e5f
27 sg:journal.1040979
28 schema:name Exponential stability of states close to resonance in infinite-dimensional Hamiltonian systems
29 schema:pagination 569-606
30 schema:productId N30f9f274e8a44a1aa4edf69e2bacbab2
31 N3333cd50562a4a729607bf4a913e7a82
32 Nb105a5aaee78444991f737b6e1913050
33 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003681860
34 https://doi.org/10.1007/bf01058438
35 schema:sdDatePublished 2019-04-10T17:27
36 schema:sdLicense https://scigraph.springernature.com/explorer/license/
37 schema:sdPublisher N5e5bc96dace443a7a6d9bd4ee8d62841
38 schema:url http://link.springer.com/10.1007/BF01058438
39 sgo:license sg:explorer/license/
40 sgo:sdDataset articles
41 rdf:type schema:ScholarlyArticle
42 N30f9f274e8a44a1aa4edf69e2bacbab2 schema:name dimensions_id
43 schema:value pub.1003681860
44 rdf:type schema:PropertyValue
45 N3333cd50562a4a729607bf4a913e7a82 schema:name doi
46 schema:value 10.1007/bf01058438
47 rdf:type schema:PropertyValue
48 N3f983d6ae37645e08def7cdaca01ef5c rdf:first sg:person.013165751557.27
49 rdf:rest Na6e6fe264d5c4abf848d67b0d68ece96
50 N50a20e90f7654af69992773b1a94476b schema:name Dipartimento di Matematica dell'Università, 20133, Milano, Italy
51 rdf:type schema:Organization
52 N5e5bc96dace443a7a6d9bd4ee8d62841 schema:name Springer Nature - SN SciGraph project
53 rdf:type schema:Organization
54 N82ba633edd4c4f33a511a9ced3688e9e schema:name Dipartimento di Matematica dell'Università, 20133, Milano, Italy
55 rdf:type schema:Organization
56 Na600af001a384f3cae5337d33731d0d2 schema:issueNumber 3-4
57 rdf:type schema:PublicationIssue
58 Na6e6fe264d5c4abf848d67b0d68ece96 rdf:first sg:person.010532704656.30
59 rdf:rest rdf:nil
60 Nb105a5aaee78444991f737b6e1913050 schema:name readcube_id
61 schema:value 1189f30a1da92245f70837cf462a62fcd127197e09a42786ac19349d36496bd7
62 rdf:type schema:PropertyValue
63 Nf945b1fd0f864f2d9f48e32631618e5f schema:volumeNumber 71
64 rdf:type schema:PublicationVolume
65 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
66 schema:name Mathematical Sciences
67 rdf:type schema:DefinedTerm
68 anzsrc-for:0102 schema:inDefinedTermSet anzsrc-for:
69 schema:name Applied Mathematics
70 rdf:type schema:DefinedTerm
71 sg:journal.1040979 schema:issn 0022-4715
72 1572-9613
73 schema:name Journal of Statistical Physics
74 rdf:type schema:Periodical
75 sg:person.010532704656.30 schema:affiliation N50a20e90f7654af69992773b1a94476b
76 schema:familyName Giorgilli
77 schema:givenName Antonio
78 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010532704656.30
79 rdf:type schema:Person
80 sg:person.013165751557.27 schema:affiliation N82ba633edd4c4f33a511a9ced3688e9e
81 schema:familyName Bambusi
82 schema:givenName Dario
83 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013165751557.27
84 rdf:type schema:Person
85 sg:pub.10.1007/978-1-4684-0265-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044940296
86 https://doi.org/10.1007/978-1-4684-0265-0
87 rdf:type schema:CreativeWork
88 sg:pub.10.1007/bf01127712 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034044964
89 https://doi.org/10.1007/bf01127712
90 rdf:type schema:CreativeWork
91 sg:pub.10.1007/bf01211753 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044928177
92 https://doi.org/10.1007/bf01211753
93 rdf:type schema:CreativeWork
94 sg:pub.10.1007/bf01214577 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021617332
95 https://doi.org/10.1007/bf01214577
96 rdf:type schema:CreativeWork
97 sg:pub.10.1007/bf01218157 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051921197
98 https://doi.org/10.1007/bf01218157
99 rdf:type schema:CreativeWork
100 sg:pub.10.1007/bf01218262 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020365094
101 https://doi.org/10.1007/bf01218262
102 rdf:type schema:CreativeWork
103 sg:pub.10.1007/bf01232832 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028824895
104 https://doi.org/10.1007/bf01232832
105 rdf:type schema:CreativeWork
106 sg:pub.10.1007/bf02096763 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048162865
107 https://doi.org/10.1007/bf02096763
108 rdf:type schema:CreativeWork
109 sg:pub.10.1007/bf02104499 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011338124
110 https://doi.org/10.1007/bf02104499
111 rdf:type schema:CreativeWork
112 sg:pub.10.1007/bf02723539 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030151468
113 https://doi.org/10.1007/bf02723539
114 rdf:type schema:CreativeWork
115 sg:pub.10.1007/bf02723540 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027238174
116 https://doi.org/10.1007/bf02723540
117 rdf:type schema:CreativeWork
118 https://app.dimensions.ai/details/publication/pub.1003940502 schema:CreativeWork
119 https://doi.org/10.1002/cpa.3160230406 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000879061
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1016/0021-8928(89)90002-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015018047
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1016/0167-2789(92)90074-w schema:sameAs https://app.dimensions.ai/details/publication/pub.1048657814
124 rdf:type schema:CreativeWork
 




Preview window. Press ESC to close (or click here)


...