Generalized Bethe ansatz solution of a one-dimensional asymmetric exclusion process on a ring with blockage View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1993-05

AUTHORS

G. Schütz

ABSTRACT

We present a model for a one-dimensional anisotropic exclusion process describing particles moving deterministically on a ring of lengthL with a single defect, across which they move with probability 0 ⩽p ⩽ 1. This model is equivalent to a two-dimensional, six-vertex model in an extreme anisotropic limit with a defect line interpolating between open and periodic boundary conditions. We solve this model with a Bethe ansatz generalized to this kind of boundary condition. We discuss in detail the steady state and derive exact expressions for the currentj, the density profilen(x), and the two-point density correlation function. In the thermodynamic limitL → ∞ the phase diagram shows three phases, a low-density phase, a coexistence phase, and a high-density phase related to the low-density phase by a particle-hole symmetry. In the low-density phase the density profile decays exponentially with the distance from the boundary to its bulk value on a length scale ξ. On the phase transition line ξ diverges and the currentj approaches its critical valuejc = p as a power law,jc − j ∞ ξ−1/2. In the coexistence phase the widthδ of the interface between the high-density region and the low-density region is proportional toL1/2 if the densityρf 1/2 andδ=0 independent ofL ifρ = 1/2. The (connected) two-point correlation function turns out to be of a scaling form with a space-dependent amplitude n(x1, x2) =A(x2)AKe−r/ξ withr = x2 −x1 and a critical exponent κ = 0. More... »

PAGES

471-505

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf01058433

DOI

http://dx.doi.org/10.1007/bf01058433

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1036390124


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Weizmann Institute of Science", 
          "id": "https://www.grid.ac/institutes/grid.13992.30", 
          "name": [
            "Department of Nuclear Physics, Weizmann Institute, Rehovot, Israel"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sch\u00fctz", 
        "givenName": "G.", 
        "id": "sg:person.0644637204.33", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0644637204.33"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/0375-9601(81)90251-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023445209"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0375-9601(81)90251-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023445209"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0550-3213(87)90193-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031950511"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0550-3213(87)90193-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031950511"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4613-8542-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045961506", 
          "https://doi.org/10.1007/978-1-4613-8542-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4613-8542-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045961506", 
          "https://doi.org/10.1007/978-1-4613-8542-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0305-4470/21/10/015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059069496"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0305-4470/23/15/011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059070970"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.45.618", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060485357"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.45.618", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060485357"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.12.3795", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060520259"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.12.3795", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060520259"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.56.889", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060793614"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.56.889", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060793614"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.67.1882", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060803229"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.67.1882", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060803229"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.68.725", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060805012"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.68.725", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060805012"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/s0217751x89000959", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062928736"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1993-05", 
    "datePublishedReg": "1993-05-01", 
    "description": "We present a model for a one-dimensional anisotropic exclusion process describing particles moving deterministically on a ring of lengthL with a single defect, across which they move with probability 0 \u2a7dp \u2a7d 1. This model is equivalent to a two-dimensional, six-vertex model in an extreme anisotropic limit with a defect line interpolating between open and periodic boundary conditions. We solve this model with a Bethe ansatz generalized to this kind of boundary condition. We discuss in detail the steady state and derive exact expressions for the currentj, the density profilen(x), and the two-point density correlation function. In the thermodynamic limitL \u2192 \u221e the phase diagram shows three phases, a low-density phase, a coexistence phase, and a high-density phase related to the low-density phase by a particle-hole symmetry. In the low-density phase the density profile decays exponentially with the distance from the boundary to its bulk value on a length scale \u03be. On the phase transition line \u03be diverges and the currentj approaches its critical valuejc = p as a power law,jc \u2212 j \u221e \u03be\u22121/2. In the coexistence phase the width\u03b4 of the interface between the high-density region and the low-density region is proportional toL1/2 if the density\u03c1f 1/2 and\u03b4=0 independent ofL if\u03c1 = 1/2. The (connected) two-point correlation function turns out to be of a scaling form with a space-dependent amplitude n(x1, x2) =A(x2)AKe\u2212r/\u03be withr = x2 \u2212x1 and a critical exponent \u03ba = 0.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf01058433", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1040979", 
        "issn": [
          "0022-4715", 
          "1572-9613"
        ], 
        "name": "Journal of Statistical Physics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3-4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "71"
      }
    ], 
    "name": "Generalized Bethe ansatz solution of a one-dimensional asymmetric exclusion process on a ring with blockage", 
    "pagination": "471-505", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "ad595d2f5687465f01f8c6c62a852f42d01f967b95485ab94fb23bd3bf1a0a84"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf01058433"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1036390124"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf01058433", 
      "https://app.dimensions.ai/details/publication/pub.1036390124"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:26", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000370_0000000370/records_46737_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/BF01058433"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01058433'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01058433'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01058433'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01058433'


 

This table displays all metadata directly associated to this object as RDF triples.

95 TRIPLES      21 PREDICATES      38 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf01058433 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N2659e762acf54b5a9835c325355853c3
4 schema:citation sg:pub.10.1007/978-1-4613-8542-4
5 https://doi.org/10.1016/0375-9601(81)90251-6
6 https://doi.org/10.1016/0550-3213(87)90193-3
7 https://doi.org/10.1088/0305-4470/21/10/015
8 https://doi.org/10.1088/0305-4470/23/15/011
9 https://doi.org/10.1103/physreva.45.618
10 https://doi.org/10.1103/physrevb.12.3795
11 https://doi.org/10.1103/physrevlett.56.889
12 https://doi.org/10.1103/physrevlett.67.1882
13 https://doi.org/10.1103/physrevlett.68.725
14 https://doi.org/10.1142/s0217751x89000959
15 schema:datePublished 1993-05
16 schema:datePublishedReg 1993-05-01
17 schema:description We present a model for a one-dimensional anisotropic exclusion process describing particles moving deterministically on a ring of lengthL with a single defect, across which they move with probability 0 ⩽p ⩽ 1. This model is equivalent to a two-dimensional, six-vertex model in an extreme anisotropic limit with a defect line interpolating between open and periodic boundary conditions. We solve this model with a Bethe ansatz generalized to this kind of boundary condition. We discuss in detail the steady state and derive exact expressions for the currentj, the density profilen(x), and the two-point density correlation function. In the thermodynamic limitL → ∞ the phase diagram shows three phases, a low-density phase, a coexistence phase, and a high-density phase related to the low-density phase by a particle-hole symmetry. In the low-density phase the density profile decays exponentially with the distance from the boundary to its bulk value on a length scale ξ. On the phase transition line ξ diverges and the currentj approaches its critical valuejc = p as a power law,jc − j ∞ ξ−1/2. In the coexistence phase the widthδ of the interface between the high-density region and the low-density region is proportional toL1/2 if the densityρf 1/2 andδ=0 independent ofL ifρ = 1/2. The (connected) two-point correlation function turns out to be of a scaling form with a space-dependent amplitude n(x1, x2) =A(x2)AKe−r/ξ withr = x2 −x1 and a critical exponent κ = 0.
18 schema:genre research_article
19 schema:inLanguage en
20 schema:isAccessibleForFree false
21 schema:isPartOf N1215feeb32c6480a8f4f21ff8d74611c
22 N5410b33b201744fda72e7ea93cac4c34
23 sg:journal.1040979
24 schema:name Generalized Bethe ansatz solution of a one-dimensional asymmetric exclusion process on a ring with blockage
25 schema:pagination 471-505
26 schema:productId N08c969ee35c846f7982d104c0bc83c7d
27 N1f9e8dc699074b928f8c086598db23a9
28 N38334fcf55f14037a099f86b7d60cf93
29 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036390124
30 https://doi.org/10.1007/bf01058433
31 schema:sdDatePublished 2019-04-11T13:26
32 schema:sdLicense https://scigraph.springernature.com/explorer/license/
33 schema:sdPublisher N370dcdc5836e4e2084269940609c23ba
34 schema:url http://link.springer.com/10.1007/BF01058433
35 sgo:license sg:explorer/license/
36 sgo:sdDataset articles
37 rdf:type schema:ScholarlyArticle
38 N08c969ee35c846f7982d104c0bc83c7d schema:name doi
39 schema:value 10.1007/bf01058433
40 rdf:type schema:PropertyValue
41 N1215feeb32c6480a8f4f21ff8d74611c schema:volumeNumber 71
42 rdf:type schema:PublicationVolume
43 N1f9e8dc699074b928f8c086598db23a9 schema:name dimensions_id
44 schema:value pub.1036390124
45 rdf:type schema:PropertyValue
46 N2659e762acf54b5a9835c325355853c3 rdf:first sg:person.0644637204.33
47 rdf:rest rdf:nil
48 N370dcdc5836e4e2084269940609c23ba schema:name Springer Nature - SN SciGraph project
49 rdf:type schema:Organization
50 N38334fcf55f14037a099f86b7d60cf93 schema:name readcube_id
51 schema:value ad595d2f5687465f01f8c6c62a852f42d01f967b95485ab94fb23bd3bf1a0a84
52 rdf:type schema:PropertyValue
53 N5410b33b201744fda72e7ea93cac4c34 schema:issueNumber 3-4
54 rdf:type schema:PublicationIssue
55 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
56 schema:name Mathematical Sciences
57 rdf:type schema:DefinedTerm
58 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
59 schema:name Pure Mathematics
60 rdf:type schema:DefinedTerm
61 sg:journal.1040979 schema:issn 0022-4715
62 1572-9613
63 schema:name Journal of Statistical Physics
64 rdf:type schema:Periodical
65 sg:person.0644637204.33 schema:affiliation https://www.grid.ac/institutes/grid.13992.30
66 schema:familyName Schütz
67 schema:givenName G.
68 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0644637204.33
69 rdf:type schema:Person
70 sg:pub.10.1007/978-1-4613-8542-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045961506
71 https://doi.org/10.1007/978-1-4613-8542-4
72 rdf:type schema:CreativeWork
73 https://doi.org/10.1016/0375-9601(81)90251-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023445209
74 rdf:type schema:CreativeWork
75 https://doi.org/10.1016/0550-3213(87)90193-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031950511
76 rdf:type schema:CreativeWork
77 https://doi.org/10.1088/0305-4470/21/10/015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059069496
78 rdf:type schema:CreativeWork
79 https://doi.org/10.1088/0305-4470/23/15/011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059070970
80 rdf:type schema:CreativeWork
81 https://doi.org/10.1103/physreva.45.618 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060485357
82 rdf:type schema:CreativeWork
83 https://doi.org/10.1103/physrevb.12.3795 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060520259
84 rdf:type schema:CreativeWork
85 https://doi.org/10.1103/physrevlett.56.889 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060793614
86 rdf:type schema:CreativeWork
87 https://doi.org/10.1103/physrevlett.67.1882 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060803229
88 rdf:type schema:CreativeWork
89 https://doi.org/10.1103/physrevlett.68.725 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060805012
90 rdf:type schema:CreativeWork
91 https://doi.org/10.1142/s0217751x89000959 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062928736
92 rdf:type schema:CreativeWork
93 https://www.grid.ac/institutes/grid.13992.30 schema:alternateName Weizmann Institute of Science
94 schema:name Department of Nuclear Physics, Weizmann Institute, Rehovot, Israel
95 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...