Infinite-range mean-field percolation: Transfer matrix study of longitudinal correlation length View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1991-07

AUTHORS

V. Privman, L. S. Schulman

ABSTRACT

Two infinite-range directed percolation models, equivalent also to epidemic models, are considered for a finite population (finite number of sites)N at each “time” (directed axis) step. The general features of the transfer matrix spectrum (evolution operator spectrum for the epidemic) are studied numerically, and compared with analytical predictions in the limitN = ∞. One of the models is devised to allow numerical results to be obtained forN as high as nearly 800 for the largest longitudinal percolation correlation length (relaxation time for epidemic). The finite-N behavior of this correlation length is studied in detail, including scaling near the percolation transition, exponential divergence (withN) above the percolation transition, as well as other noncritical and critical-point properties. More... »

PAGES

207-226

References to SciGraph publications

Journal

TITLE

Journal of Statistical Physics

ISSUE

1-2

VOLUME

64

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf01057874

DOI

http://dx.doi.org/10.1007/bf01057874

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1024095822


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Clarkson University", 
          "id": "https://www.grid.ac/institutes/grid.254280.9", 
          "name": [
            "Department of Physics, Clarkson University, 13699-5820, Potsdam, New York"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Privman", 
        "givenName": "V.", 
        "id": "sg:person.0737257700.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0737257700.22"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Clarkson University", 
          "id": "https://www.grid.ac/institutes/grid.254280.9", 
          "name": [
            "Department of Physics, Clarkson University, 13699-5820, Potsdam, New York"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Schulman", 
        "givenName": "L. S.", 
        "id": "sg:person.010275521604.97", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010275521604.97"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/0550-3213(85)90379-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000566070"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0550-3213(85)90379-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000566070"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01011727", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019423006", 
          "https://doi.org/10.1007/bf01011727"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01009803", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037745085", 
          "https://doi.org/10.1007/bf01009803"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0550-3213(89)90233-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040111294"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0550-3213(89)90233-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040111294"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01019773", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049345690", 
          "https://doi.org/10.1007/bf01019773"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.65.117", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060452328"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.65.117", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060452328"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.32.447", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060538455"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.32.447", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060538455"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.33.7729", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060540291"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.33.7729", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060540291"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.40.7005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060552351"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.40.7005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060552351"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.65.1777", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060801280"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.65.1777", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060801280"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.233.4762.425", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062532798"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1991-07", 
    "datePublishedReg": "1991-07-01", 
    "description": "Two infinite-range directed percolation models, equivalent also to epidemic models, are considered for a finite population (finite number of sites)N at each \u201ctime\u201d (directed axis) step. The general features of the transfer matrix spectrum (evolution operator spectrum for the epidemic) are studied numerically, and compared with analytical predictions in the limitN = \u221e. One of the models is devised to allow numerical results to be obtained forN as high as nearly 800 for the largest longitudinal percolation correlation length (relaxation time for epidemic). The finite-N behavior of this correlation length is studied in detail, including scaling near the percolation transition, exponential divergence (withN) above the percolation transition, as well as other noncritical and critical-point properties.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf01057874", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1040979", 
        "issn": [
          "0022-4715", 
          "1572-9613"
        ], 
        "name": "Journal of Statistical Physics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1-2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "64"
      }
    ], 
    "name": "Infinite-range mean-field percolation: Transfer matrix study of longitudinal correlation length", 
    "pagination": "207-226", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "72cc33ea7b3e9c2931c47ddea70b9c2b92e4de111e04786ffd46e4acbcd80f75"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf01057874"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1024095822"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf01057874", 
      "https://app.dimensions.ai/details/publication/pub.1024095822"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T01:56", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8700_00000495.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/BF01057874"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01057874'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01057874'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01057874'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01057874'


 

This table displays all metadata directly associated to this object as RDF triples.

104 TRIPLES      21 PREDICATES      38 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf01057874 schema:about anzsrc-for:01
2 anzsrc-for:0104
3 schema:author N5009281cebba49598713a80a384e300b
4 schema:citation sg:pub.10.1007/bf01009803
5 sg:pub.10.1007/bf01011727
6 sg:pub.10.1007/bf01019773
7 https://doi.org/10.1016/0550-3213(85)90379-7
8 https://doi.org/10.1016/0550-3213(89)90233-2
9 https://doi.org/10.1103/physrev.65.117
10 https://doi.org/10.1103/physrevb.32.447
11 https://doi.org/10.1103/physrevb.33.7729
12 https://doi.org/10.1103/physrevb.40.7005
13 https://doi.org/10.1103/physrevlett.65.1777
14 https://doi.org/10.1126/science.233.4762.425
15 schema:datePublished 1991-07
16 schema:datePublishedReg 1991-07-01
17 schema:description Two infinite-range directed percolation models, equivalent also to epidemic models, are considered for a finite population (finite number of sites)N at each “time” (directed axis) step. The general features of the transfer matrix spectrum (evolution operator spectrum for the epidemic) are studied numerically, and compared with analytical predictions in the limitN = ∞. One of the models is devised to allow numerical results to be obtained forN as high as nearly 800 for the largest longitudinal percolation correlation length (relaxation time for epidemic). The finite-N behavior of this correlation length is studied in detail, including scaling near the percolation transition, exponential divergence (withN) above the percolation transition, as well as other noncritical and critical-point properties.
18 schema:genre research_article
19 schema:inLanguage en
20 schema:isAccessibleForFree false
21 schema:isPartOf N7d590d1b3c6a41acaa7de94a48b44376
22 Na4b616e093ef4fc8b7210438f81c72ae
23 sg:journal.1040979
24 schema:name Infinite-range mean-field percolation: Transfer matrix study of longitudinal correlation length
25 schema:pagination 207-226
26 schema:productId N4d4a7bb466834bdab5c46c0878748a30
27 Nc5cbf98b9fec4bbc9cca533cfd559032
28 Neb904562732f40ca97bd05d62c7508cf
29 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024095822
30 https://doi.org/10.1007/bf01057874
31 schema:sdDatePublished 2019-04-11T01:56
32 schema:sdLicense https://scigraph.springernature.com/explorer/license/
33 schema:sdPublisher Ne9cd20d0715a42d0b53feac0de3514f6
34 schema:url http://link.springer.com/10.1007/BF01057874
35 sgo:license sg:explorer/license/
36 sgo:sdDataset articles
37 rdf:type schema:ScholarlyArticle
38 N4d4a7bb466834bdab5c46c0878748a30 schema:name dimensions_id
39 schema:value pub.1024095822
40 rdf:type schema:PropertyValue
41 N5009281cebba49598713a80a384e300b rdf:first sg:person.0737257700.22
42 rdf:rest N6c0a87bcd74641ac95183b2a46ce7bb8
43 N6c0a87bcd74641ac95183b2a46ce7bb8 rdf:first sg:person.010275521604.97
44 rdf:rest rdf:nil
45 N7d590d1b3c6a41acaa7de94a48b44376 schema:issueNumber 1-2
46 rdf:type schema:PublicationIssue
47 Na4b616e093ef4fc8b7210438f81c72ae schema:volumeNumber 64
48 rdf:type schema:PublicationVolume
49 Nc5cbf98b9fec4bbc9cca533cfd559032 schema:name doi
50 schema:value 10.1007/bf01057874
51 rdf:type schema:PropertyValue
52 Ne9cd20d0715a42d0b53feac0de3514f6 schema:name Springer Nature - SN SciGraph project
53 rdf:type schema:Organization
54 Neb904562732f40ca97bd05d62c7508cf schema:name readcube_id
55 schema:value 72cc33ea7b3e9c2931c47ddea70b9c2b92e4de111e04786ffd46e4acbcd80f75
56 rdf:type schema:PropertyValue
57 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
58 schema:name Mathematical Sciences
59 rdf:type schema:DefinedTerm
60 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
61 schema:name Statistics
62 rdf:type schema:DefinedTerm
63 sg:journal.1040979 schema:issn 0022-4715
64 1572-9613
65 schema:name Journal of Statistical Physics
66 rdf:type schema:Periodical
67 sg:person.010275521604.97 schema:affiliation https://www.grid.ac/institutes/grid.254280.9
68 schema:familyName Schulman
69 schema:givenName L. S.
70 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010275521604.97
71 rdf:type schema:Person
72 sg:person.0737257700.22 schema:affiliation https://www.grid.ac/institutes/grid.254280.9
73 schema:familyName Privman
74 schema:givenName V.
75 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0737257700.22
76 rdf:type schema:Person
77 sg:pub.10.1007/bf01009803 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037745085
78 https://doi.org/10.1007/bf01009803
79 rdf:type schema:CreativeWork
80 sg:pub.10.1007/bf01011727 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019423006
81 https://doi.org/10.1007/bf01011727
82 rdf:type schema:CreativeWork
83 sg:pub.10.1007/bf01019773 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049345690
84 https://doi.org/10.1007/bf01019773
85 rdf:type schema:CreativeWork
86 https://doi.org/10.1016/0550-3213(85)90379-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000566070
87 rdf:type schema:CreativeWork
88 https://doi.org/10.1016/0550-3213(89)90233-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040111294
89 rdf:type schema:CreativeWork
90 https://doi.org/10.1103/physrev.65.117 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060452328
91 rdf:type schema:CreativeWork
92 https://doi.org/10.1103/physrevb.32.447 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060538455
93 rdf:type schema:CreativeWork
94 https://doi.org/10.1103/physrevb.33.7729 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060540291
95 rdf:type schema:CreativeWork
96 https://doi.org/10.1103/physrevb.40.7005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060552351
97 rdf:type schema:CreativeWork
98 https://doi.org/10.1103/physrevlett.65.1777 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060801280
99 rdf:type schema:CreativeWork
100 https://doi.org/10.1126/science.233.4762.425 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062532798
101 rdf:type schema:CreativeWork
102 https://www.grid.ac/institutes/grid.254280.9 schema:alternateName Clarkson University
103 schema:name Department of Physics, Clarkson University, 13699-5820, Potsdam, New York
104 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...