Transport and storage of CO2 in the ocean ——an inorganic ocean-circulation carbon cycle model View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1987-08

AUTHORS

E. Maier-Reimer, K. Hasselmann

ABSTRACT

Inorganic carbon in the ocean is modelled as a passive tracer advected by a three-dimensional current field computed from a dynamical global ocean circulation model. The carbon exchange between the ocean and atmosphere is determined directly from the (temperature-dependent) chemical interaction rates in the mixed layer, using a standard CO2 flux relation at the air-sea interface. The carbon cycle is closed by coupling the ocean to a one-layer, horizontally diffusive atmosphere. Biological sources and sinks are not included. In this form the ocean carbon model contains essentially no free tuning parameters. The model may be regarded as a reference for interpreting numerical experiments with extended versions of the model including biological processes in the ocean (Bacastow R and Maier-Reimer E in prep.) and on land (Esser G et al in prep.). Qualitatively, the model reproduces the principal features of the observed CO2 distribution bution in the surface ocean. However, the amplitudes of surface pCO2 are underestimated in upwelling regions by a factor of the order of 1.5 due to the missing biological pump. The model without biota may, nevertheless, be applied to compute the storage capacity of the ocean to first order for anthropogenic CO2 emissions. In the linear regime, the response of the model may be represented by an impulse response function which can be approximated by a superposition of exponentials with different amplitudes and time constants. This provides a simple reference for comparison with box models. The largest-amplitude (∼0.35) exponential has a time constant of 300 years. The effective storage capacity of the oceans is strongly dependent on the time history of the anthropogenic input, as found also in earlier box model studies. More... »

PAGES

63-90

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf01054491

DOI

http://dx.doi.org/10.1007/bf01054491

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1040451933


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Earth Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0405", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Oceanography", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Max-Planck-Institut f\u00fcr Meteorologie, D-2000, Hamburg 13, Federal Republic of Germany", 
          "id": "http://www.grid.ac/institutes/grid.450268.d", 
          "name": [
            "Max-Planck-Institut f\u00fcr Meteorologie, D-2000, Hamburg 13, Federal Republic of Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Maier-Reimer", 
        "givenName": "E.", 
        "id": "sg:person.014145550405.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014145550405.00"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Max-Planck-Institut f\u00fcr Meteorologie, D-2000, Hamburg 13, Federal Republic of Germany", 
          "id": "http://www.grid.ac/institutes/grid.450268.d", 
          "name": [
            "Max-Planck-Institut f\u00fcr Meteorologie, D-2000, Hamburg 13, Federal Republic of Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hasselmann", 
        "givenName": "K.", 
        "id": "sg:person.011507631147.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011507631147.31"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/315045a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027684203", 
          "https://doi.org/10.1038/315045a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4684-1986-3_6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020372707", 
          "https://doi.org/10.1007/978-1-4684-1986-3_6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/276053a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049427287", 
          "https://doi.org/10.1038/276053a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/284155a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033082813", 
          "https://doi.org/10.1038/284155a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02423220", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024564561", 
          "https://doi.org/10.1007/bf02423220"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1987-08", 
    "datePublishedReg": "1987-08-01", 
    "description": "Inorganic carbon in the ocean is modelled as a passive tracer advected by a three-dimensional current field computed from a dynamical global ocean circulation model. The carbon exchange between the ocean and atmosphere is determined directly from the (temperature-dependent) chemical interaction rates in the mixed layer, using a standard CO2 flux relation at the air-sea interface. The carbon cycle is closed by coupling the ocean to a one-layer, horizontally diffusive atmosphere. Biological sources and sinks are not included. In this form the ocean carbon model contains essentially no free tuning parameters. The model may be regarded as a reference for interpreting numerical experiments with extended versions of the model including biological processes in the ocean (Bacastow R and Maier-Reimer E in prep.) and on land (Esser G et al in prep.). Qualitatively, the model reproduces the principal features of the observed CO2 distribution bution in the surface ocean. However, the amplitudes of surface pCO2 are underestimated in upwelling regions by a factor of the order of 1.5 due to the missing biological pump. The model without biota may, nevertheless, be applied to compute the storage capacity of the ocean to first order for anthropogenic CO2 emissions. In the linear regime, the response of the model may be represented by an impulse response function which can be approximated by a superposition of exponentials with different amplitudes and time constants. This provides a simple reference for comparison with box models. The largest-amplitude (\u223c0.35) exponential has a time constant of 300 years. The effective storage capacity of the oceans is strongly dependent on the time history of the anthropogenic input, as found also in earlier box model studies.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/bf01054491", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1049631", 
        "issn": [
          "0930-7575", 
          "1432-0894"
        ], 
        "name": "Climate Dynamics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "2"
      }
    ], 
    "keywords": [
      "global ocean circulation model", 
      "three-dimensional current field", 
      "ocean carbon models", 
      "ocean circulation model", 
      "air-sea interface", 
      "carbon cycle models", 
      "box model study", 
      "anthropogenic CO2 emissions", 
      "storage of CO2", 
      "effective storage capacity", 
      "surface pCO2", 
      "surface ocean", 
      "biological pump", 
      "circulation model", 
      "upwelling region", 
      "diffusive atmosphere", 
      "anthropogenic inputs", 
      "mixed layer", 
      "carbon cycle", 
      "inorganic carbon", 
      "passive tracer", 
      "Ocean", 
      "carbon exchange", 
      "box model", 
      "free tuning parameters", 
      "superposition of exponentials", 
      "carbon models", 
      "current field", 
      "storage capacity", 
      "cycle model", 
      "model studies", 
      "biological sources", 
      "atmosphere", 
      "time histories", 
      "flux relation", 
      "numerical experiments", 
      "principal features", 
      "CO2 emissions", 
      "one-layer", 
      "sink", 
      "pCO2", 
      "tracer", 
      "land", 
      "CO2", 
      "carbon", 
      "transport", 
      "amplitude", 
      "model", 
      "regime", 
      "different amplitudes", 
      "biological processes", 
      "region", 
      "input", 
      "source", 
      "cycle", 
      "layer", 
      "exchange", 
      "emission", 
      "response function", 
      "history", 
      "superposition", 
      "first order", 
      "impulse response function", 
      "storage", 
      "simple reference", 
      "features", 
      "order", 
      "field", 
      "years", 
      "process", 
      "bution", 
      "comparison", 
      "reference", 
      "time", 
      "extended version", 
      "parameters", 
      "rate", 
      "relation", 
      "interface", 
      "experiments", 
      "response", 
      "study", 
      "capacity", 
      "version", 
      "interaction rates", 
      "factors", 
      "pump", 
      "time constants", 
      "form", 
      "tuning parameters", 
      "linear regime", 
      "function", 
      "exponential", 
      "constants"
    ], 
    "name": "Transport and storage of CO2 in the ocean \u2014\u2014an inorganic ocean-circulation carbon cycle model", 
    "pagination": "63-90", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1040451933"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf01054491"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf01054491", 
      "https://app.dimensions.ai/details/publication/pub.1040451933"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-08-04T16:50", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220804/entities/gbq_results/article/article_214.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/bf01054491"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01054491'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01054491'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01054491'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01054491'


 

This table displays all metadata directly associated to this object as RDF triples.

178 TRIPLES      21 PREDICATES      124 URIs      111 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf01054491 schema:about anzsrc-for:04
2 anzsrc-for:0405
3 schema:author Nd65de2b6d2ae48cd8b3658f601c3f0fd
4 schema:citation sg:pub.10.1007/978-1-4684-1986-3_6
5 sg:pub.10.1007/bf02423220
6 sg:pub.10.1038/276053a0
7 sg:pub.10.1038/284155a0
8 sg:pub.10.1038/315045a0
9 schema:datePublished 1987-08
10 schema:datePublishedReg 1987-08-01
11 schema:description Inorganic carbon in the ocean is modelled as a passive tracer advected by a three-dimensional current field computed from a dynamical global ocean circulation model. The carbon exchange between the ocean and atmosphere is determined directly from the (temperature-dependent) chemical interaction rates in the mixed layer, using a standard CO2 flux relation at the air-sea interface. The carbon cycle is closed by coupling the ocean to a one-layer, horizontally diffusive atmosphere. Biological sources and sinks are not included. In this form the ocean carbon model contains essentially no free tuning parameters. The model may be regarded as a reference for interpreting numerical experiments with extended versions of the model including biological processes in the ocean (Bacastow R and Maier-Reimer E in prep.) and on land (Esser G et al in prep.). Qualitatively, the model reproduces the principal features of the observed CO2 distribution bution in the surface ocean. However, the amplitudes of surface pCO2 are underestimated in upwelling regions by a factor of the order of 1.5 due to the missing biological pump. The model without biota may, nevertheless, be applied to compute the storage capacity of the ocean to first order for anthropogenic CO2 emissions. In the linear regime, the response of the model may be represented by an impulse response function which can be approximated by a superposition of exponentials with different amplitudes and time constants. This provides a simple reference for comparison with box models. The largest-amplitude (∼0.35) exponential has a time constant of 300 years. The effective storage capacity of the oceans is strongly dependent on the time history of the anthropogenic input, as found also in earlier box model studies.
12 schema:genre article
13 schema:isAccessibleForFree false
14 schema:isPartOf N1de9dd69c71b435eabf51b5de403c853
15 Neba70463aab64e618aecfa6abe5c8c9b
16 sg:journal.1049631
17 schema:keywords CO2
18 CO2 emissions
19 Ocean
20 air-sea interface
21 amplitude
22 anthropogenic CO2 emissions
23 anthropogenic inputs
24 atmosphere
25 biological processes
26 biological pump
27 biological sources
28 box model
29 box model study
30 bution
31 capacity
32 carbon
33 carbon cycle
34 carbon cycle models
35 carbon exchange
36 carbon models
37 circulation model
38 comparison
39 constants
40 current field
41 cycle
42 cycle model
43 different amplitudes
44 diffusive atmosphere
45 effective storage capacity
46 emission
47 exchange
48 experiments
49 exponential
50 extended version
51 factors
52 features
53 field
54 first order
55 flux relation
56 form
57 free tuning parameters
58 function
59 global ocean circulation model
60 history
61 impulse response function
62 inorganic carbon
63 input
64 interaction rates
65 interface
66 land
67 layer
68 linear regime
69 mixed layer
70 model
71 model studies
72 numerical experiments
73 ocean carbon models
74 ocean circulation model
75 one-layer
76 order
77 pCO2
78 parameters
79 passive tracer
80 principal features
81 process
82 pump
83 rate
84 reference
85 regime
86 region
87 relation
88 response
89 response function
90 simple reference
91 sink
92 source
93 storage
94 storage capacity
95 storage of CO2
96 study
97 superposition
98 superposition of exponentials
99 surface ocean
100 surface pCO2
101 three-dimensional current field
102 time
103 time constants
104 time histories
105 tracer
106 transport
107 tuning parameters
108 upwelling region
109 version
110 years
111 schema:name Transport and storage of CO2 in the ocean ——an inorganic ocean-circulation carbon cycle model
112 schema:pagination 63-90
113 schema:productId N1be0799ae02a4009b9659402f949b477
114 N691166f0ae894916b566b0cb539162fc
115 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040451933
116 https://doi.org/10.1007/bf01054491
117 schema:sdDatePublished 2022-08-04T16:50
118 schema:sdLicense https://scigraph.springernature.com/explorer/license/
119 schema:sdPublisher N286517c4a57641e6acc6f89bdcb1a5a1
120 schema:url https://doi.org/10.1007/bf01054491
121 sgo:license sg:explorer/license/
122 sgo:sdDataset articles
123 rdf:type schema:ScholarlyArticle
124 N1be0799ae02a4009b9659402f949b477 schema:name doi
125 schema:value 10.1007/bf01054491
126 rdf:type schema:PropertyValue
127 N1de9dd69c71b435eabf51b5de403c853 schema:issueNumber 2
128 rdf:type schema:PublicationIssue
129 N286517c4a57641e6acc6f89bdcb1a5a1 schema:name Springer Nature - SN SciGraph project
130 rdf:type schema:Organization
131 N44ad8fcf1d474791aa2aec1820890f68 rdf:first sg:person.011507631147.31
132 rdf:rest rdf:nil
133 N691166f0ae894916b566b0cb539162fc schema:name dimensions_id
134 schema:value pub.1040451933
135 rdf:type schema:PropertyValue
136 Nd65de2b6d2ae48cd8b3658f601c3f0fd rdf:first sg:person.014145550405.00
137 rdf:rest N44ad8fcf1d474791aa2aec1820890f68
138 Neba70463aab64e618aecfa6abe5c8c9b schema:volumeNumber 2
139 rdf:type schema:PublicationVolume
140 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
141 schema:name Earth Sciences
142 rdf:type schema:DefinedTerm
143 anzsrc-for:0405 schema:inDefinedTermSet anzsrc-for:
144 schema:name Oceanography
145 rdf:type schema:DefinedTerm
146 sg:journal.1049631 schema:issn 0930-7575
147 1432-0894
148 schema:name Climate Dynamics
149 schema:publisher Springer Nature
150 rdf:type schema:Periodical
151 sg:person.011507631147.31 schema:affiliation grid-institutes:grid.450268.d
152 schema:familyName Hasselmann
153 schema:givenName K.
154 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011507631147.31
155 rdf:type schema:Person
156 sg:person.014145550405.00 schema:affiliation grid-institutes:grid.450268.d
157 schema:familyName Maier-Reimer
158 schema:givenName E.
159 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014145550405.00
160 rdf:type schema:Person
161 sg:pub.10.1007/978-1-4684-1986-3_6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020372707
162 https://doi.org/10.1007/978-1-4684-1986-3_6
163 rdf:type schema:CreativeWork
164 sg:pub.10.1007/bf02423220 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024564561
165 https://doi.org/10.1007/bf02423220
166 rdf:type schema:CreativeWork
167 sg:pub.10.1038/276053a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049427287
168 https://doi.org/10.1038/276053a0
169 rdf:type schema:CreativeWork
170 sg:pub.10.1038/284155a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033082813
171 https://doi.org/10.1038/284155a0
172 rdf:type schema:CreativeWork
173 sg:pub.10.1038/315045a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027684203
174 https://doi.org/10.1038/315045a0
175 rdf:type schema:CreativeWork
176 grid-institutes:grid.450268.d schema:alternateName Max-Planck-Institut für Meteorologie, D-2000, Hamburg 13, Federal Republic of Germany
177 schema:name Max-Planck-Institut für Meteorologie, D-2000, Hamburg 13, Federal Republic of Germany
178 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...