An exact solution of a one-dimensional asymmetric exclusion model with open boundaries View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1992-11

AUTHORS

B. Derrida, E. Domany, D. Mukamel

ABSTRACT

A simple asymmetric exclusion model with open boundaries is solved exactly in one dimension. The exact solution is obtained by deriving a recursion relation for the steady state: if the steady state is known for all system sizes less thanN, then our equation (8) gives the steady state for sizeN. Using this recursion, we obtain closed expressions (48) for the average occupations of all sites. The results are compared to the predictions of a mean field theory. In particular, for infinitely large systems, the effect of the boundary decays as the distance to the power −1/2 instead of the inverse of the distance, as predicted by the mean field theory. More... »

PAGES

667-687

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf01050430

DOI

http://dx.doi.org/10.1007/bf01050430

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1033813849


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "Service de Physique Th\u00e9orique, CE Saclay, F-91191, Gif sur Yvette, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Derrida", 
        "givenName": "B.", 
        "id": "sg:person.0766735742.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0766735742.49"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Weizmann Institute of Science", 
          "id": "https://www.grid.ac/institutes/grid.13992.30", 
          "name": [
            "Department of Electronics, Weizmann Institute of Science, 76100, Rehovot, Israel"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Domany", 
        "givenName": "E.", 
        "id": "sg:person.0760227321.61", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0760227321.61"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Weizmann Institute of Science", 
          "id": "https://www.grid.ac/institutes/grid.13992.30", 
          "name": [
            "Department of Physics, Weizmann Institute of Science, 76100, Rehovot, Israel"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mukamel", 
        "givenName": "D.", 
        "id": "sg:person.01366651524.25", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01366651524.25"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/0375-9601(81)90251-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023445209"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0375-9601(81)90251-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023445209"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01015727", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044349796", 
          "https://doi.org/10.1007/bf01015727"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01011307", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046962617", 
          "https://doi.org/10.1007/bf01011307"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01011307", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046962617", 
          "https://doi.org/10.1007/bf01011307"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01112771", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051447871", 
          "https://doi.org/10.1007/bf01112771"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01112771", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051447871", 
          "https://doi.org/10.1007/bf01112771"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01941803", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053040699", 
          "https://doi.org/10.1007/bf01941803"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01941803", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053040699", 
          "https://doi.org/10.1007/bf01941803"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.45.618", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060485357"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.45.618", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060485357"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.28.5711", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060533593"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.28.5711", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060533593"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.54.2026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060791432"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.54.2026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060791432"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.56.889", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060793614"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.56.889", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060793614"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.65.1591", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060801221"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.65.1591", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060801221"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.67.165", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060803155"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.67.165", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060803155"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.67.1882", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060803229"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.67.1882", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060803229"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.68.725", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060805012"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.68.725", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060805012"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/aop/1176992369", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064404390"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1992-11", 
    "datePublishedReg": "1992-11-01", 
    "description": "A simple asymmetric exclusion model with open boundaries is solved exactly in one dimension. The exact solution is obtained by deriving a recursion relation for the steady state: if the steady state is known for all system sizes less thanN, then our equation (8) gives the steady state for sizeN. Using this recursion, we obtain closed expressions (48) for the average occupations of all sites. The results are compared to the predictions of a mean field theory. In particular, for infinitely large systems, the effect of the boundary decays as the distance to the power \u22121/2 instead of the inverse of the distance, as predicted by the mean field theory.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf01050430", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1040979", 
        "issn": [
          "0022-4715", 
          "1572-9613"
        ], 
        "name": "Journal of Statistical Physics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3-4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "69"
      }
    ], 
    "name": "An exact solution of a one-dimensional asymmetric exclusion model with open boundaries", 
    "pagination": "667-687", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "a114227018bc79da870d1ac3a2b25efd9f4a7a0653ae9e02d440eb6f7cda86d2"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf01050430"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1033813849"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf01050430", 
      "https://app.dimensions.ai/details/publication/pub.1033813849"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T18:17", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8675_00000496.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/BF01050430"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01050430'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01050430'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01050430'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01050430'


 

This table displays all metadata directly associated to this object as RDF triples.

124 TRIPLES      21 PREDICATES      41 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf01050430 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N2c079c94f9954822b618c7c3ee27c846
4 schema:citation sg:pub.10.1007/bf01011307
5 sg:pub.10.1007/bf01015727
6 sg:pub.10.1007/bf01112771
7 sg:pub.10.1007/bf01941803
8 https://doi.org/10.1016/0375-9601(81)90251-6
9 https://doi.org/10.1103/physreva.45.618
10 https://doi.org/10.1103/physrevb.28.5711
11 https://doi.org/10.1103/physrevlett.54.2026
12 https://doi.org/10.1103/physrevlett.56.889
13 https://doi.org/10.1103/physrevlett.65.1591
14 https://doi.org/10.1103/physrevlett.67.165
15 https://doi.org/10.1103/physrevlett.67.1882
16 https://doi.org/10.1103/physrevlett.68.725
17 https://doi.org/10.1214/aop/1176992369
18 schema:datePublished 1992-11
19 schema:datePublishedReg 1992-11-01
20 schema:description A simple asymmetric exclusion model with open boundaries is solved exactly in one dimension. The exact solution is obtained by deriving a recursion relation for the steady state: if the steady state is known for all system sizes less thanN, then our equation (8) gives the steady state for sizeN. Using this recursion, we obtain closed expressions (48) for the average occupations of all sites. The results are compared to the predictions of a mean field theory. In particular, for infinitely large systems, the effect of the boundary decays as the distance to the power −1/2 instead of the inverse of the distance, as predicted by the mean field theory.
21 schema:genre research_article
22 schema:inLanguage en
23 schema:isAccessibleForFree false
24 schema:isPartOf N2d5905dacaf84c73bdcb8d1f011de34a
25 Nb89b1e565cfc4d05ad022731fc0021e4
26 sg:journal.1040979
27 schema:name An exact solution of a one-dimensional asymmetric exclusion model with open boundaries
28 schema:pagination 667-687
29 schema:productId N202aa85a6ece402d936b4bac2dff76a9
30 Nacf706e3222b453d82797de493bcf4b6
31 Naf65017ae85d4c00a40a5ab49b5c683a
32 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033813849
33 https://doi.org/10.1007/bf01050430
34 schema:sdDatePublished 2019-04-10T18:17
35 schema:sdLicense https://scigraph.springernature.com/explorer/license/
36 schema:sdPublisher N1c2810d55ffe444ca4c50e1ab0a1350f
37 schema:url http://link.springer.com/10.1007/BF01050430
38 sgo:license sg:explorer/license/
39 sgo:sdDataset articles
40 rdf:type schema:ScholarlyArticle
41 N1c2810d55ffe444ca4c50e1ab0a1350f schema:name Springer Nature - SN SciGraph project
42 rdf:type schema:Organization
43 N202aa85a6ece402d936b4bac2dff76a9 schema:name doi
44 schema:value 10.1007/bf01050430
45 rdf:type schema:PropertyValue
46 N2c079c94f9954822b618c7c3ee27c846 rdf:first sg:person.0766735742.49
47 rdf:rest Nfb439fea281c4265903d8021fafb0888
48 N2d5905dacaf84c73bdcb8d1f011de34a schema:issueNumber 3-4
49 rdf:type schema:PublicationIssue
50 N9788df39915e4c8fb5b1cabc4dda1662 rdf:first sg:person.01366651524.25
51 rdf:rest rdf:nil
52 Nacf706e3222b453d82797de493bcf4b6 schema:name dimensions_id
53 schema:value pub.1033813849
54 rdf:type schema:PropertyValue
55 Naf65017ae85d4c00a40a5ab49b5c683a schema:name readcube_id
56 schema:value a114227018bc79da870d1ac3a2b25efd9f4a7a0653ae9e02d440eb6f7cda86d2
57 rdf:type schema:PropertyValue
58 Nb89b1e565cfc4d05ad022731fc0021e4 schema:volumeNumber 69
59 rdf:type schema:PublicationVolume
60 Nefab45ecaece4a58bdd7ffac48f4b0c2 schema:name Service de Physique Théorique, CE Saclay, F-91191, Gif sur Yvette, France
61 rdf:type schema:Organization
62 Nfb439fea281c4265903d8021fafb0888 rdf:first sg:person.0760227321.61
63 rdf:rest N9788df39915e4c8fb5b1cabc4dda1662
64 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
65 schema:name Mathematical Sciences
66 rdf:type schema:DefinedTerm
67 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
68 schema:name Pure Mathematics
69 rdf:type schema:DefinedTerm
70 sg:journal.1040979 schema:issn 0022-4715
71 1572-9613
72 schema:name Journal of Statistical Physics
73 rdf:type schema:Periodical
74 sg:person.01366651524.25 schema:affiliation https://www.grid.ac/institutes/grid.13992.30
75 schema:familyName Mukamel
76 schema:givenName D.
77 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01366651524.25
78 rdf:type schema:Person
79 sg:person.0760227321.61 schema:affiliation https://www.grid.ac/institutes/grid.13992.30
80 schema:familyName Domany
81 schema:givenName E.
82 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0760227321.61
83 rdf:type schema:Person
84 sg:person.0766735742.49 schema:affiliation Nefab45ecaece4a58bdd7ffac48f4b0c2
85 schema:familyName Derrida
86 schema:givenName B.
87 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0766735742.49
88 rdf:type schema:Person
89 sg:pub.10.1007/bf01011307 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046962617
90 https://doi.org/10.1007/bf01011307
91 rdf:type schema:CreativeWork
92 sg:pub.10.1007/bf01015727 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044349796
93 https://doi.org/10.1007/bf01015727
94 rdf:type schema:CreativeWork
95 sg:pub.10.1007/bf01112771 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051447871
96 https://doi.org/10.1007/bf01112771
97 rdf:type schema:CreativeWork
98 sg:pub.10.1007/bf01941803 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053040699
99 https://doi.org/10.1007/bf01941803
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1016/0375-9601(81)90251-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023445209
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1103/physreva.45.618 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060485357
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1103/physrevb.28.5711 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060533593
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1103/physrevlett.54.2026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060791432
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1103/physrevlett.56.889 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060793614
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1103/physrevlett.65.1591 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060801221
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1103/physrevlett.67.165 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060803155
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1103/physrevlett.67.1882 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060803229
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1103/physrevlett.68.725 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060805012
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1214/aop/1176992369 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064404390
120 rdf:type schema:CreativeWork
121 https://www.grid.ac/institutes/grid.13992.30 schema:alternateName Weizmann Institute of Science
122 schema:name Department of Electronics, Weizmann Institute of Science, 76100, Rehovot, Israel
123 Department of Physics, Weizmann Institute of Science, 76100, Rehovot, Israel
124 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...