Hölder type quasicontinuity View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1993-09

AUTHORS

Jan Malý

ABSTRACT

It is proved that a functionu∈Lm,p(Rn) (which coincides with the Sobolev spaceW1,p(Rn) ifm=1) coincides with a Hölder continuous functionw outside a set of smallm,q-capacity, whereq PAGES

249-254

Journal

TITLE

Potential Analysis

ISSUE

3

VOLUME

2

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf01048508

DOI

http://dx.doi.org/10.1007/bf01048508

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1026555933


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "author": [
      {
        "affiliation": {
          "alternateName": "Charles University", 
          "id": "https://www.grid.ac/institutes/grid.4491.8", 
          "name": [
            "Department of Mathematics, Charles University, Sokolovsk\u00e1 83, 18600, Praha 8, Czechia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mal\u00fd", 
        "givenName": "Jan", 
        "id": "sg:person.016026347345.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016026347345.35"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf00971658", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007358265", 
          "https://doi.org/10.1007/bf00971658"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00971658", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007358265", 
          "https://doi.org/10.1007/bf00971658"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-0346-0416-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012012456", 
          "https://doi.org/10.1007/978-3-0346-0416-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-0346-0416-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012012456", 
          "https://doi.org/10.1007/978-3-0346-0416-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1215/s0012-7094-75-04214-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064418729"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5802/aif.55", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1073139194"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.7146/math.scand.a-10981", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1073613109"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/pspum/004/0143037", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1089193145"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/conm/042/807986", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1089205597"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4064/sm-20-2-181-225", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091703140"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1993-09", 
    "datePublishedReg": "1993-09-01", 
    "description": "It is proved that a functionu\u2208Lm,p(Rn) (which coincides with the Sobolev spaceW1,p(Rn) ifm=1) coincides with a H\u00f6lder continuous functionw outside a set of smallm,q-capacity, whereq
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01048508'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01048508'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01048508'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01048508'


 

This table displays all metadata directly associated to this object as RDF triples.

79 TRIPLES      20 PREDICATES      33 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf01048508 schema:author Nae45165f72d749fd813996eae63e8ab7
2 schema:citation sg:pub.10.1007/978-3-0346-0416-1
3 sg:pub.10.1007/bf00971658
4 https://doi.org/10.1090/conm/042/807986
5 https://doi.org/10.1090/pspum/004/0143037
6 https://doi.org/10.1215/s0012-7094-75-04214-3
7 https://doi.org/10.4064/sm-20-2-181-225
8 https://doi.org/10.5802/aif.55
9 https://doi.org/10.7146/math.scand.a-10981
10 schema:datePublished 1993-09
11 schema:datePublishedReg 1993-09-01
12 schema:description It is proved that a functionu∈Lm,p(Rn) (which coincides with the Sobolev spaceW1,p(Rn) ifm=1) coincides with a Hölder continuous functionw outside a set of smallm,q-capacity, whereq<p. Moreover, ifm=1, then the functionw can be chosen to be close tou in theW1,p-norm.
13 schema:genre research_article
14 schema:inLanguage en
15 schema:isAccessibleForFree false
16 schema:isPartOf N3bef7971c8fc4e648c2c38c86adc5f33
17 N712012f0df9440fb976a9c90d3c687da
18 sg:journal.1135984
19 schema:name Hölder type quasicontinuity
20 schema:pagination 249-254
21 schema:productId N660b8d9e8e4d4f3bbfb3b4937a97ebf4
22 N6f242ea60cc74aa681d19b7ec75c9154
23 N765f58f1cb0849298c08f3d3d9e0b1ad
24 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026555933
25 https://doi.org/10.1007/bf01048508
26 schema:sdDatePublished 2019-04-11T13:31
27 schema:sdLicense https://scigraph.springernature.com/explorer/license/
28 schema:sdPublisher N1dd6e7510a6648a1890fd4dc0eebd3ba
29 schema:url http://link.springer.com/10.1007%2FBF01048508
30 sgo:license sg:explorer/license/
31 sgo:sdDataset articles
32 rdf:type schema:ScholarlyArticle
33 N1dd6e7510a6648a1890fd4dc0eebd3ba schema:name Springer Nature - SN SciGraph project
34 rdf:type schema:Organization
35 N3bef7971c8fc4e648c2c38c86adc5f33 schema:volumeNumber 2
36 rdf:type schema:PublicationVolume
37 N660b8d9e8e4d4f3bbfb3b4937a97ebf4 schema:name dimensions_id
38 schema:value pub.1026555933
39 rdf:type schema:PropertyValue
40 N6f242ea60cc74aa681d19b7ec75c9154 schema:name doi
41 schema:value 10.1007/bf01048508
42 rdf:type schema:PropertyValue
43 N712012f0df9440fb976a9c90d3c687da schema:issueNumber 3
44 rdf:type schema:PublicationIssue
45 N765f58f1cb0849298c08f3d3d9e0b1ad schema:name readcube_id
46 schema:value 7e834d1433470de0c8778851261b5a274bd6f74d58e753981d370107650dac6a
47 rdf:type schema:PropertyValue
48 Nae45165f72d749fd813996eae63e8ab7 rdf:first sg:person.016026347345.35
49 rdf:rest rdf:nil
50 sg:journal.1135984 schema:issn 0926-2601
51 1572-929X
52 schema:name Potential Analysis
53 rdf:type schema:Periodical
54 sg:person.016026347345.35 schema:affiliation https://www.grid.ac/institutes/grid.4491.8
55 schema:familyName Malý
56 schema:givenName Jan
57 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016026347345.35
58 rdf:type schema:Person
59 sg:pub.10.1007/978-3-0346-0416-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012012456
60 https://doi.org/10.1007/978-3-0346-0416-1
61 rdf:type schema:CreativeWork
62 sg:pub.10.1007/bf00971658 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007358265
63 https://doi.org/10.1007/bf00971658
64 rdf:type schema:CreativeWork
65 https://doi.org/10.1090/conm/042/807986 schema:sameAs https://app.dimensions.ai/details/publication/pub.1089205597
66 rdf:type schema:CreativeWork
67 https://doi.org/10.1090/pspum/004/0143037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1089193145
68 rdf:type schema:CreativeWork
69 https://doi.org/10.1215/s0012-7094-75-04214-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064418729
70 rdf:type schema:CreativeWork
71 https://doi.org/10.4064/sm-20-2-181-225 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091703140
72 rdf:type schema:CreativeWork
73 https://doi.org/10.5802/aif.55 schema:sameAs https://app.dimensions.ai/details/publication/pub.1073139194
74 rdf:type schema:CreativeWork
75 https://doi.org/10.7146/math.scand.a-10981 schema:sameAs https://app.dimensions.ai/details/publication/pub.1073613109
76 rdf:type schema:CreativeWork
77 https://www.grid.ac/institutes/grid.4491.8 schema:alternateName Charles University
78 schema:name Department of Mathematics, Charles University, Sokolovská 83, 18600, Praha 8, Czechia
79 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...