A BGK model for small Prandtl number in the Navier-Stokes approximation View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1993-04

AUTHORS

François Bouchut, Benoít Perthame

ABSTRACT

We present a BGK-type collision model which approximates, by a Chapman-Enskog expansion, the compressible Navier-Stokes equations with a Prandtl number that can be chosen arbitrarily between 0 and 1. This model has the basic properties of the Boltzmann equation, including theH-theorem, but contains an extra parameter in comparison with the standard BGK model. This parameter is introduced multiplying the collision operator by a nonlinear functional of the distribution function. It is adjusted to the Prandtl number. More... »

PAGES

191-207

References to SciGraph publications

Journal

TITLE

Journal of Statistical Physics

ISSUE

1-2

VOLUME

71

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf01048094

DOI

http://dx.doi.org/10.1007/bf01048094

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1033342775


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "PMMS/CNRS, 3A, av. de la Rech. Scientifique, 45071, Orleans Cedex 2, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bouchut", 
        "givenName": "Fran\u00e7ois", 
        "id": "sg:person.010265006727.06", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010265006727.06"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Orl\u00e9ans", 
          "id": "https://www.grid.ac/institutes/grid.112485.b", 
          "name": [
            "D\u00e9partement de Math\u00e9matiques, Universit\u00e9 d'Orl\u00e9ans, BP 6759, 45067, Orleans Cedex 2, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Perthame", 
        "givenName": "Beno\u00edt", 
        "id": "sg:person.01135007274.26", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01135007274.26"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/0022-0396(89)90173-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014463665"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0021-9991(80)90107-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018435345"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-1236(88)90051-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022007736"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01982349", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024608912", 
          "https://doi.org/10.1007/bf01982349"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01982349", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024608912", 
          "https://doi.org/10.1007/bf01982349"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0021-9991(81)90235-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030560841"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cpa.3160330506", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034241907"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cpa.3160330506", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034241907"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-50235-4_2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048109552", 
          "https://doi.org/10.1007/978-3-642-50235-4_2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.94.511", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060462281"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.94.511", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060462281"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1993-04", 
    "datePublishedReg": "1993-04-01", 
    "description": "We present a BGK-type collision model which approximates, by a Chapman-Enskog expansion, the compressible Navier-Stokes equations with a Prandtl number that can be chosen arbitrarily between 0 and 1. This model has the basic properties of the Boltzmann equation, including theH-theorem, but contains an extra parameter in comparison with the standard BGK model. This parameter is introduced multiplying the collision operator by a nonlinear functional of the distribution function. It is adjusted to the Prandtl number.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf01048094", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1040979", 
        "issn": [
          "0022-4715", 
          "1572-9613"
        ], 
        "name": "Journal of Statistical Physics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1-2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "71"
      }
    ], 
    "name": "A BGK model for small Prandtl number in the Navier-Stokes approximation", 
    "pagination": "191-207", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "9ed70e41000e669350465cf7c3c6bf84214cf3516ea9cf1f04fc8a077bbd1e55"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf01048094"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1033342775"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf01048094", 
      "https://app.dimensions.ai/details/publication/pub.1033342775"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T15:48", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8664_00000496.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/BF01048094"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01048094'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01048094'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01048094'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01048094'


 

This table displays all metadata directly associated to this object as RDF triples.

96 TRIPLES      21 PREDICATES      35 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf01048094 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N3e8adc819d584abaa959a1acc8516adb
4 schema:citation sg:pub.10.1007/978-3-642-50235-4_2
5 sg:pub.10.1007/bf01982349
6 https://doi.org/10.1002/cpa.3160330506
7 https://doi.org/10.1016/0021-9991(80)90107-2
8 https://doi.org/10.1016/0021-9991(81)90235-7
9 https://doi.org/10.1016/0022-0396(89)90173-3
10 https://doi.org/10.1016/0022-1236(88)90051-1
11 https://doi.org/10.1103/physrev.94.511
12 schema:datePublished 1993-04
13 schema:datePublishedReg 1993-04-01
14 schema:description We present a BGK-type collision model which approximates, by a Chapman-Enskog expansion, the compressible Navier-Stokes equations with a Prandtl number that can be chosen arbitrarily between 0 and 1. This model has the basic properties of the Boltzmann equation, including theH-theorem, but contains an extra parameter in comparison with the standard BGK model. This parameter is introduced multiplying the collision operator by a nonlinear functional of the distribution function. It is adjusted to the Prandtl number.
15 schema:genre research_article
16 schema:inLanguage en
17 schema:isAccessibleForFree false
18 schema:isPartOf N52b0fce37f0d49e8a788c30858919ac6
19 Na8fdd44ec4ae4cc1b97ae3eb91cc0cfd
20 sg:journal.1040979
21 schema:name A BGK model for small Prandtl number in the Navier-Stokes approximation
22 schema:pagination 191-207
23 schema:productId N4f6841641d8b4c91b8d8013282016bd2
24 N61da36372949441e971827e21902212d
25 Ncdc48f53d0d547b0ae8eabad05983142
26 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033342775
27 https://doi.org/10.1007/bf01048094
28 schema:sdDatePublished 2019-04-10T15:48
29 schema:sdLicense https://scigraph.springernature.com/explorer/license/
30 schema:sdPublisher N237fd65cb4db4202add31d3f00e98f6e
31 schema:url http://link.springer.com/10.1007/BF01048094
32 sgo:license sg:explorer/license/
33 sgo:sdDataset articles
34 rdf:type schema:ScholarlyArticle
35 N237fd65cb4db4202add31d3f00e98f6e schema:name Springer Nature - SN SciGraph project
36 rdf:type schema:Organization
37 N392ebdfd069046eeb41f3510db52988c schema:name PMMS/CNRS, 3A, av. de la Rech. Scientifique, 45071, Orleans Cedex 2, France
38 rdf:type schema:Organization
39 N3e8adc819d584abaa959a1acc8516adb rdf:first sg:person.010265006727.06
40 rdf:rest N9db8584732bc4ed8bf1afe1efd480335
41 N4f6841641d8b4c91b8d8013282016bd2 schema:name dimensions_id
42 schema:value pub.1033342775
43 rdf:type schema:PropertyValue
44 N52b0fce37f0d49e8a788c30858919ac6 schema:volumeNumber 71
45 rdf:type schema:PublicationVolume
46 N61da36372949441e971827e21902212d schema:name doi
47 schema:value 10.1007/bf01048094
48 rdf:type schema:PropertyValue
49 N9db8584732bc4ed8bf1afe1efd480335 rdf:first sg:person.01135007274.26
50 rdf:rest rdf:nil
51 Na8fdd44ec4ae4cc1b97ae3eb91cc0cfd schema:issueNumber 1-2
52 rdf:type schema:PublicationIssue
53 Ncdc48f53d0d547b0ae8eabad05983142 schema:name readcube_id
54 schema:value 9ed70e41000e669350465cf7c3c6bf84214cf3516ea9cf1f04fc8a077bbd1e55
55 rdf:type schema:PropertyValue
56 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
57 schema:name Mathematical Sciences
58 rdf:type schema:DefinedTerm
59 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
60 schema:name Pure Mathematics
61 rdf:type schema:DefinedTerm
62 sg:journal.1040979 schema:issn 0022-4715
63 1572-9613
64 schema:name Journal of Statistical Physics
65 rdf:type schema:Periodical
66 sg:person.010265006727.06 schema:affiliation N392ebdfd069046eeb41f3510db52988c
67 schema:familyName Bouchut
68 schema:givenName François
69 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010265006727.06
70 rdf:type schema:Person
71 sg:person.01135007274.26 schema:affiliation https://www.grid.ac/institutes/grid.112485.b
72 schema:familyName Perthame
73 schema:givenName Benoít
74 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01135007274.26
75 rdf:type schema:Person
76 sg:pub.10.1007/978-3-642-50235-4_2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048109552
77 https://doi.org/10.1007/978-3-642-50235-4_2
78 rdf:type schema:CreativeWork
79 sg:pub.10.1007/bf01982349 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024608912
80 https://doi.org/10.1007/bf01982349
81 rdf:type schema:CreativeWork
82 https://doi.org/10.1002/cpa.3160330506 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034241907
83 rdf:type schema:CreativeWork
84 https://doi.org/10.1016/0021-9991(80)90107-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018435345
85 rdf:type schema:CreativeWork
86 https://doi.org/10.1016/0021-9991(81)90235-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030560841
87 rdf:type schema:CreativeWork
88 https://doi.org/10.1016/0022-0396(89)90173-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014463665
89 rdf:type schema:CreativeWork
90 https://doi.org/10.1016/0022-1236(88)90051-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022007736
91 rdf:type schema:CreativeWork
92 https://doi.org/10.1103/physrev.94.511 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060462281
93 rdf:type schema:CreativeWork
94 https://www.grid.ac/institutes/grid.112485.b schema:alternateName University of Orléans
95 schema:name Département de Mathématiques, Université d'Orléans, BP 6759, 45067, Orleans Cedex 2, France
96 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...