An analogue of Hunt's representation theorem in quantum probability View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1993-04

AUTHORS

A. Barchielli, A. S. Holevo, G. Lupieri

ABSTRACT

In quantum mechanics certain operator-valued measures are introduced, called instruments, which are an analogue of the probability measures of classical probability theory. As in the classical case, it is interesting to study convolution semigroups of, instruments on groups and the associated semigroups of probability operators, which now are defined on spaces of functions with values in a von Neumann algebra. We consider a semigroup of probability operators with a continuity property weaker than uniform continuity, and we succeed in characterizing its infinitesimal generator under the additional hypothesis that twice differentiable functions belong to the domain of the generator. Such hypothesis can be proved in some particular cases. In this way a partial quantum analogue of Hunt's representation theorem for the generator of convolution semigroups on Lie groups is obtained. Our result provides also a closed characterization of generators of a new class of not norm continuous quantum dynamical semigroups. More... »

PAGES

231-265

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf01047573

DOI

http://dx.doi.org/10.1007/bf01047573

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1003238493


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Russian Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.4886.2", 
          "name": [
            "Dipartimento di Fisica dell'Universit\u00e0 di Milano, Via Celoria 16, I-20133, Milano, Italy", 
            "Istituto Nazionale di Fisica Nucleare, Sezione di Milano, Russian Academy of Sciences, Vavilov str., 42, 117966, GSP-1, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Barchielli", 
        "givenName": "A.", 
        "id": "sg:person.011470604423.66", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011470604423.66"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Russian Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.4886.2", 
          "name": [
            "Steklov Mathematical Institute, Russian Academy of Sciences, Vavilov str., 42, 117966, GSP-1, Moscow, Russia", 
            "Istituto Nazionale di Fisica Nucleare, Sezione di Milano, Russian Academy of Sciences, Vavilov str., 42, 117966, GSP-1, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Holevo", 
        "givenName": "A. S.", 
        "id": "sg:person.012742037634.56", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012742037634.56"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Russian Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.4886.2", 
          "name": [
            "Dipartimento di Fisica dell'Universit\u00e0 di Milano, Via Celoria 16, I-20133, Milano, Italy", 
            "Istituto Nazionale di Fisica Nucleare, Sezione di Milano, Russian Academy of Sciences, Vavilov str., 42, 117966, GSP-1, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lupieri", 
        "givenName": "G.", 
        "id": "sg:person.07377176527.58", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07377176527.58"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1002/cpa.3160200209", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003501029"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cpa.3160200209", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003501029"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01608499", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006952044", 
          "https://doi.org/10.1007/bf01608499"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bfb0085503", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007279889", 
          "https://doi.org/10.1007/bfb0085503"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01212558", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009426637", 
          "https://doi.org/10.1007/bf01212558"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01212558", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009426637", 
          "https://doi.org/10.1007/bf01212558"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00417607", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015054163", 
          "https://doi.org/10.1007/bf00417607"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00417607", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015054163", 
          "https://doi.org/10.1007/bf00417607"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1112/jlms/s2-20.2.358", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019759372"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bfb0083548", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025896367", 
          "https://doi.org/10.1007/bfb0083548"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bfb0078059", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027439599", 
          "https://doi.org/10.1007/bfb0078059"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-66706-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028853589", 
          "https://doi.org/10.1007/978-3-642-66706-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-66706-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028853589", 
          "https://doi.org/10.1007/978-3-642-66706-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-662-00031-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033493461", 
          "https://doi.org/10.1007/978-3-662-00031-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-662-00031-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033493461", 
          "https://doi.org/10.1007/978-3-662-00031-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00340008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049784212", 
          "https://doi.org/10.1007/bf00340008"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/s0002-9947-1956-0079232-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053575077"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.522979", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058099999"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.526000", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058103019"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1993-04", 
    "datePublishedReg": "1993-04-01", 
    "description": "In quantum mechanics certain operator-valued measures are introduced, called instruments, which are an analogue of the probability measures of classical probability theory. As in the classical case, it is interesting to study convolution semigroups of, instruments on groups and the associated semigroups of probability operators, which now are defined on spaces of functions with values in a von Neumann algebra. We consider a semigroup of probability operators with a continuity property weaker than uniform continuity, and we succeed in characterizing its infinitesimal generator under the additional hypothesis that twice differentiable functions belong to the domain of the generator. Such hypothesis can be proved in some particular cases. In this way a partial quantum analogue of Hunt's representation theorem for the generator of convolution semigroups on Lie groups is obtained. Our result provides also a closed characterization of generators of a new class of not norm continuous quantum dynamical semigroups.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf01047573", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136853", 
        "issn": [
          "0894-9840", 
          "1572-9230"
        ], 
        "name": "Journal of Theoretical Probability", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "6"
      }
    ], 
    "name": "An analogue of Hunt's representation theorem in quantum probability", 
    "pagination": "231-265", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "0f6d3216f3cf0d50426c1bf1f3602bc84a730bdab6db1dc9b1481fd6b529b808"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf01047573"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1003238493"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf01047573", 
      "https://app.dimensions.ai/details/publication/pub.1003238493"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:26", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000370_0000000370/records_46737_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/BF01047573"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01047573'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01047573'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01047573'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01047573'


 

This table displays all metadata directly associated to this object as RDF triples.

128 TRIPLES      21 PREDICATES      41 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf01047573 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N3aebb3c9fae9440aad6ab2db21d7d87d
4 schema:citation sg:pub.10.1007/978-3-642-66706-0
5 sg:pub.10.1007/978-3-662-00031-1
6 sg:pub.10.1007/bf00340008
7 sg:pub.10.1007/bf00417607
8 sg:pub.10.1007/bf01212558
9 sg:pub.10.1007/bf01608499
10 sg:pub.10.1007/bfb0078059
11 sg:pub.10.1007/bfb0083548
12 sg:pub.10.1007/bfb0085503
13 https://doi.org/10.1002/cpa.3160200209
14 https://doi.org/10.1063/1.522979
15 https://doi.org/10.1063/1.526000
16 https://doi.org/10.1090/s0002-9947-1956-0079232-9
17 https://doi.org/10.1112/jlms/s2-20.2.358
18 schema:datePublished 1993-04
19 schema:datePublishedReg 1993-04-01
20 schema:description In quantum mechanics certain operator-valued measures are introduced, called instruments, which are an analogue of the probability measures of classical probability theory. As in the classical case, it is interesting to study convolution semigroups of, instruments on groups and the associated semigroups of probability operators, which now are defined on spaces of functions with values in a von Neumann algebra. We consider a semigroup of probability operators with a continuity property weaker than uniform continuity, and we succeed in characterizing its infinitesimal generator under the additional hypothesis that twice differentiable functions belong to the domain of the generator. Such hypothesis can be proved in some particular cases. In this way a partial quantum analogue of Hunt's representation theorem for the generator of convolution semigroups on Lie groups is obtained. Our result provides also a closed characterization of generators of a new class of not norm continuous quantum dynamical semigroups.
21 schema:genre research_article
22 schema:inLanguage en
23 schema:isAccessibleForFree false
24 schema:isPartOf Nf42810a7f78a4ff88c4e97f8b3d39009
25 Nf603d4b703c2472f982eebf420864d06
26 sg:journal.1136853
27 schema:name An analogue of Hunt's representation theorem in quantum probability
28 schema:pagination 231-265
29 schema:productId N342578ae458d4137b508895aabfb003b
30 Na03a9ddcb48049c3a3ea2f5f7b195366
31 Nb2fcbd6b3cd64ceba8e7ca751c60f766
32 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003238493
33 https://doi.org/10.1007/bf01047573
34 schema:sdDatePublished 2019-04-11T13:26
35 schema:sdLicense https://scigraph.springernature.com/explorer/license/
36 schema:sdPublisher N7e88825171ff4745af6cf4031e88110b
37 schema:url http://link.springer.com/10.1007/BF01047573
38 sgo:license sg:explorer/license/
39 sgo:sdDataset articles
40 rdf:type schema:ScholarlyArticle
41 N342578ae458d4137b508895aabfb003b schema:name dimensions_id
42 schema:value pub.1003238493
43 rdf:type schema:PropertyValue
44 N3aebb3c9fae9440aad6ab2db21d7d87d rdf:first sg:person.011470604423.66
45 rdf:rest Nddd70e9b9c8644d788ae2a411f721e9f
46 N631adb87179f465c8931fe3d030dca5d rdf:first sg:person.07377176527.58
47 rdf:rest rdf:nil
48 N7e88825171ff4745af6cf4031e88110b schema:name Springer Nature - SN SciGraph project
49 rdf:type schema:Organization
50 Na03a9ddcb48049c3a3ea2f5f7b195366 schema:name doi
51 schema:value 10.1007/bf01047573
52 rdf:type schema:PropertyValue
53 Nb2fcbd6b3cd64ceba8e7ca751c60f766 schema:name readcube_id
54 schema:value 0f6d3216f3cf0d50426c1bf1f3602bc84a730bdab6db1dc9b1481fd6b529b808
55 rdf:type schema:PropertyValue
56 Nddd70e9b9c8644d788ae2a411f721e9f rdf:first sg:person.012742037634.56
57 rdf:rest N631adb87179f465c8931fe3d030dca5d
58 Nf42810a7f78a4ff88c4e97f8b3d39009 schema:issueNumber 2
59 rdf:type schema:PublicationIssue
60 Nf603d4b703c2472f982eebf420864d06 schema:volumeNumber 6
61 rdf:type schema:PublicationVolume
62 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
63 schema:name Mathematical Sciences
64 rdf:type schema:DefinedTerm
65 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
66 schema:name Pure Mathematics
67 rdf:type schema:DefinedTerm
68 sg:journal.1136853 schema:issn 0894-9840
69 1572-9230
70 schema:name Journal of Theoretical Probability
71 rdf:type schema:Periodical
72 sg:person.011470604423.66 schema:affiliation https://www.grid.ac/institutes/grid.4886.2
73 schema:familyName Barchielli
74 schema:givenName A.
75 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011470604423.66
76 rdf:type schema:Person
77 sg:person.012742037634.56 schema:affiliation https://www.grid.ac/institutes/grid.4886.2
78 schema:familyName Holevo
79 schema:givenName A. S.
80 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012742037634.56
81 rdf:type schema:Person
82 sg:person.07377176527.58 schema:affiliation https://www.grid.ac/institutes/grid.4886.2
83 schema:familyName Lupieri
84 schema:givenName G.
85 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07377176527.58
86 rdf:type schema:Person
87 sg:pub.10.1007/978-3-642-66706-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028853589
88 https://doi.org/10.1007/978-3-642-66706-0
89 rdf:type schema:CreativeWork
90 sg:pub.10.1007/978-3-662-00031-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033493461
91 https://doi.org/10.1007/978-3-662-00031-1
92 rdf:type schema:CreativeWork
93 sg:pub.10.1007/bf00340008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049784212
94 https://doi.org/10.1007/bf00340008
95 rdf:type schema:CreativeWork
96 sg:pub.10.1007/bf00417607 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015054163
97 https://doi.org/10.1007/bf00417607
98 rdf:type schema:CreativeWork
99 sg:pub.10.1007/bf01212558 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009426637
100 https://doi.org/10.1007/bf01212558
101 rdf:type schema:CreativeWork
102 sg:pub.10.1007/bf01608499 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006952044
103 https://doi.org/10.1007/bf01608499
104 rdf:type schema:CreativeWork
105 sg:pub.10.1007/bfb0078059 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027439599
106 https://doi.org/10.1007/bfb0078059
107 rdf:type schema:CreativeWork
108 sg:pub.10.1007/bfb0083548 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025896367
109 https://doi.org/10.1007/bfb0083548
110 rdf:type schema:CreativeWork
111 sg:pub.10.1007/bfb0085503 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007279889
112 https://doi.org/10.1007/bfb0085503
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1002/cpa.3160200209 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003501029
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1063/1.522979 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058099999
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1063/1.526000 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058103019
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1090/s0002-9947-1956-0079232-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053575077
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1112/jlms/s2-20.2.358 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019759372
123 rdf:type schema:CreativeWork
124 https://www.grid.ac/institutes/grid.4886.2 schema:alternateName Russian Academy of Sciences
125 schema:name Dipartimento di Fisica dell'Università di Milano, Via Celoria 16, I-20133, Milano, Italy
126 Istituto Nazionale di Fisica Nucleare, Sezione di Milano, Russian Academy of Sciences, Vavilov str., 42, 117966, GSP-1, Moscow, Russia
127 Steklov Mathematical Institute, Russian Academy of Sciences, Vavilov str., 42, 117966, GSP-1, Moscow, Russia
128 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...